Three-Dimensional Flow and Heat Transfer within Highly Anisotropic Porous Media

Numerical Determination of Permeability Tensor, Inertial Tensor, and Interfacial Heat Transfer Coefficient

F. Kuwahara and A. Nakayama

CONTENTS
6.1 Introduction ... 235
6.2 Volume-Averaged Governing Equations 238
6.3 Preliminary Consideration of Macroscopically Uniform Flow Through an Isothermal Porous Medium 239
6.4 Periodic Boundary Conditions for Three-Dimensional Periodic Structure .. 241
6.5 Quasi-Three-Dimensional Numerical Calculation Procedure .. 244
6.6 Method of Computation and Preliminary Numerical Consideration ... 246
6.7 Validation of Quasi-Three-Dimensional Calculation Procedure ... 248
6.8 Determination of Permeability Tensor 249
6.9 Determination of Forchheimer Tensor 252
6.10 Determination of Interfacial Heat Transfer Coefficient 256
6.11 Conclusions ... 262
Nomenclature .. 262
References .. 263

6.1 Introduction
In order to design efficient heat transfer equipment, one must know the details of both flow and temperature fields within the equipment. Such detailed flow and temperature fields within a manmade assembly may be investigated numerically by solving the set of governing equations based on the first
FIGURE 6.2
Fully developed channel flow.