12

Analytical Models for Porous Media Impairment by Particles in Rectilinear and Radial Flows

Faruk Civan and Maurice L. Rasmussen

CONTENTS
Summary ... 486
12.1 Introduction ... 487
12.2 Formulation ... 489
 12.2.1 Basic Transport Equation ... 489
 12.2.2 Modeling for Rate of Deposition Function .. 492
 12.2.2.1 Present model .. 492
 12.2.2.2 The Model by Herzig et al. ... 495
 12.2.2.3 Discussion of the models .. 496
 12.2.3 Permeability Impairment, Injectivity Ratio, and Impedance Index 497
 12.2.3.1 One-dimensional rectilinear case ... 498
 12.2.3.2 Radial case .. 498
12.3 One-Dimensional Rectilinear Problem with Constant Injection Rate 499
 12.3.1 Transport Equation .. 499
 12.3.2 Constant-Rate Coefficient ... 499
 12.3.2.1 Nondimensional variables .. 500
 12.3.2.2 Characteristic equations ... 502
 12.3.3 Variable-Rate Coefficient .. 509
 12.3.3.1 Present model ... 510
 12.3.3.2 Solution for the model by Herzig et al. ... 512
 12.3.3.3 Comparison and discussion ... 514
 12.3.3.4 Average permeability and impedance index 518
12.4 One-Dimensional Rectilinear Problem with Time-Dependent Injection Rate ... 522
Summary

One-dimensional rectilinear and radial macroscopic phenomenological models along with analytical solutions and applications for impairment of porous media by migration and deposition of fine particles, and effects on the injectivity decline during flow of particle–fluid suspensions, are presented in this chapter. The mechanism and kinetics of the fine particle deposition in porous medium for two different models are described and compared. The present approach considers the rate of deposition at a given location to be proportional to the particle flux, with the proportionality factor being a function of the cumulative particles passing by the location per unit volume. The popular model by Herzig et al. [Herzig, J.P., Leclerc, D.M., and Le Goff, P., Flow of suspensions through porous media — application to deep filtration, Industrial Eng. Chem., 62(5), 8–35, 1970.] stems from the assumption that the proportionality factor, called the filtration coefficient, is a variable depending on the deposition function itself. The present new system of equations has a similar appearance to that developed by Herzig et al., but the equivalent constitutive relations are subtly different.

The formulation and analytic solution for the constant and time-dependent injection-rate cases are carried out. A methodology for determination of the parameters of the deep-bed filtration process is provided. Typical scenarios
FIGURE 12.1
Fine particle migration and deposition in a typical pore volume.