
Computer Science & Engineering Course Syllabi-1

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 10

Course Title Introduction to Computer Science
for Science, Mathematics and
Engineering I

Units 4 Course
Coordinator

Kris Miller

Required/elective required URL (if any): fish.cs.ucr.edu/moodle

Current Catalog Description: Solving problems through structured programming of
algorithms on computers, using the C++ object-oriented language. Topics include
variables, expressions, input/output (I/O), branches, loops, functions, parameters, arrays,
strings, file I/O, and classes. Also covers software design, testing, and debugging.

Textbook: Big C++, by Cay Horstmann and Timothy Budd, John Wiley & Sons, Inc.
ISBN: 0-471-47063-5

References/Materials
CodeLab: www.turingscraft.com

Course Goals/Objectives:

1. Use variables to store computer program data
2. Form and use mathematical and Boolean expressions of variables
3. Process program input and generate program output
4. Use branches to create programs incorporating decision making
5. Use loops to create programs that repeat certain behaviors
6. Use functions to modularize programs
7. Use arrays to store collections of data
8. Use strings to handle textual data
9. Use classes as a record that keeps related data together
10. Convert a problem description into a set of about 50-100 computer instructions
11. Debug programs written by oneself or by others
12. Understand very basic methods of testing a program
13. Incorporate useful comments into programs

Prerequisites by Courses and Topics: MATH 009A (may be taken concurrently), First
Year Calculus. Introduction to the differential calculus of functions of one variable.

Major Topics Covered in the Course
Variables, expressions, input/output (I/O), branches, loops, functions, parameters, vectors,
strings, and object oriented design. Also covers software design, testing, and debugging.

Laboratory schedule: number of sessions per week and duration of each session:

Computer Science & Engineering Course Syllabi-2

Lecture, 3 hours; laboratory, 3 hours
Laboratory projects (specify number of weeks on each)
Linux operating system and basic programming tools - 1 week
variables and expressions - 1 week
input/output and strings - 1 week
programming with objects (graphics) - 1 week
branches - 1 week
loops - 2 weeks
functions and parameters - 2 weeks
vectors - 1 week
software testing and debugging - part of 2 different lab projects in separate weeks

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms Data Structures
Software Design 20% Prog. Languages 75%
Comp. Arch. 5%

Oral and Written Communications:
Every student is required to submit at least __0__ written reports (not including exams,
tests, quizzes, or commented programs) of typically _____ pages and to make _____
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Students are taught their code should follow the style guidelines of the class or employer
they are writing for in order to make them more accessible. 20% of all programming
assignment scores is dedicated to enforcing this.

Students are taught the importance of writing their own programs without copying from
external sources such as the internet or fellow students. Any unauthorized reuse of code for
programming assignments results in a failing grade.

Other than on programming assignments, students are encouraged to work together in teams
or study groups. Both in lecture and in the labs, students are encouraged and sometimes
rewarded with points for working in teams to solve problems and/or write code. A very
small amount of time (15 - 30 mintues total) is spent in lecture discussing the need to
develop teamwork skills.

Theoretical Content

Computer Science & Engineering Course Syllabi-3

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Most of the lecture and especially lab time is spent learning the basic programming concepts
listed above and putting them into practice using C++. Approximately 10 minutes out of
each hour in lecture is spent teaching the theoretical aspects of each of these topics. For
example, to motivate the use of functions about 10 to 20 minutes is spent on explaining how
functions allow for code reuse and better organized, more manageable programs. Also, the
concept of a function as a "black box" is discussed at this time.

Problem Analysis

Please describe the analysis experiences common to all course sections.

Each lab exercise and programming assignment requires the students to apply their newly
learned programming concepts in order to solve problems. Most of these problems are well
defined and require a specific solution, but some are intentionally underspecified to force
the students to analyze it and ask for clarification.

The last programming assignment asks the student to analyze a partially completed
battleship program and then finish it by writing the final two functions.

On written exams, students are required to analyze code written by others and specify its
result without the benefit of executing it on a computer.

Computer Science & Engineering Course Syllabi-4

Solution Design

Please describe the design experiences common to all course sections.
Most of the programming assignments are a build up to a simple moonlander simulation. As
each new programming concept is learned, we have them apply that to the moonlander
simulation. For example, when variables and expressions are taught, we have them design a
program that outputs textually the position at each second of an object in freefall for 4
seconds. We give them the formula for freefall and then they have to apply their knowledge
of variables and expressions to calculate and output the position at each second. By the end
of the quarter, the last moonlander assignment uses all the concepts they have learned
including loops, branches, functions, etc.

Assessment methods: CodeLab Homework 5%, In-lab exercises 5%, In-lab tests
20%, Quizzes 10%, Programming Assignments 10%, Lecture Midterm 20%, Lab
Final 10%, Lecture final 20%

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
Teamwork skills and following a particular coding style guideline to make their program more
accessible to others are taught and assessed throughout the course.

Relationship of course to program outcomes: The contribution of CS10 to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Use variables to store computer program data 2 0 0 0 0 0 0 0 0 0 3
Form and use mathematical and Boolean expressions of
variables

3 0 0 0 0 0 0 0 0 0 3

Process program input and generate program output 1 0 2 0 0 0 0 0 0 0 3
Use branches to create programs incorporating decision
making

1 0 2 0 0 0 0 0 0 0 3

Use loops to create programs that repeat certain behaviors 1 0 2 0 0 0 0 0 0 0 3
Use functions to modularize programs 1 0 2 0 0 1 0 0 0 0 3
Use arrays to store collections of data 1 0 2 0 0 0 0 0 0 0 3
Use strings to handle textual data 1 0 2 0 0 0 0 0 0 0 3
Use classes as a record that keeps related data together 1 0 2 0 0 0 0 0 0 0 3
Convert a problem description into a set of about 50-100
computer instructions

3 0 3 0 0 0 0 0 0 0 3

Debug programs written by oneself or by others 3 3 0 0 0 0 0 0 0 0 3
Understand very basic methods of testing a program 3 2 0 0 0 0 0 0 0 0 3
Incorporate useful comments into programs 0 0 0 0 0 1 0 0 0 0 3

Prepared by, and date of preparation:
Kris Miller - 6/20/06

Computer Science & Engineering Course Syllabi-5

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 12

Course Title Introduction to Computer Science
for Science, Mathematics and
Engineering II

Units 4 Course
Coordinator

Brian Linard

Required/elective required URL (if any): fish.cs.ucr.edu/moodle

Current Catalog Description: Structured and object-oriented programming in C++,
emphasizing good programming principles and development of substantial programs.
Topics include recursion, pointers, linked lists, abstract data types, and libraries. Also
covers software engineering principles.

Textbook: Big C++, by Cay Horstmann and Timothy Budd, John Wiley & Sons, Inc.
ISBN: 0-471-47063-5

References/Materials
see course website (fish.cs.ucr.edu/moodle)
CodeLab: www.turingscraft.com

Course Goals/Objectives:

1. Use recursion to solve certain programming problems elegantly
2. Use pointers to access data
3. Develop pointer-based linked lists
4. Understand the advantages of abstract data types
5. Use and understand the advantages of libraries
6. Convert a problem description into a set of about 100-to-200 computer

instructions
7. Debug programs written by oneself or by others, using a debugger tool
8. Test programs using basic methods
9. Develop basic proficiency of working in a Unix environment

Prerequisites by Courses and Topics: MATH 009A: Introduction to the differential
calculus of functions of one variable. May be taken concurrently.

Computer Science & Engineering Course Syllabi-6

Major Topics Covered in the Course

- classes – interfaces & implementation;
- multiple file compilation & the make utility;
- testing & debugging;
- introduction to OO design and the concept of software engineering;
- pointers & dynamic memory allocation;
- inheritance & polymorphism;
- virtual / pure virtual functions & dynamic binding;
- recursion;
- basic sorting & searching;
- linked lists;
- introduction to the STL.

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 3 hours

Laboratory projects (specify number of weeks on each)
A lab session (or a half-session) is devoted to each of the topics listed above.

One lab session is a team project: 2 teams compete to build a graphical tic-tac-toe game; each
team comprises a project manager, a build master, and teams to implement classes according to
provided interfaces.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 10 Data Structures 20
Software Design 25 Prog. Languages 40
Comp. Arch. 5

Oral and Written Communications:
Every student is required to submit at least __0___ written reports (not including exams,
tests, quizzes, or commented programs) of typically _____ pages and to make __0___
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

No structured treatment of these issues: a total of perhaps 2 hours over the quarter spent in
informal discussions, mostly related to the responsibilty of programmers to thoroughly test
their code and be willing to vouch for it; and to make their code accessible and readable to
their colleagues and successors.
Strict enforcement of plagiarism policies reinforces the value of personal integrity.

Computer Science & Engineering Course Syllabi-7

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Every one of the topics listed above is introduced within a context providing justification
and motivation. Some specific "theoretical" treatments are:
the process of abstraction and modelling – 1 hr.
the nature of Object Oriented design – 1 hr.
the role of data structures – 1 hr.
"generic programming" and the STL – 1 hr.

Problem Analysis

Please describe the analysis experiences common to all course sections.

The analysis & design of most assignments is provided for the students in the form of a
framework consisting of the interfaces for all required classes, so their main task is the
implementation of these interfaces.
However, one major assignment and one lab exercise are intentionally under-specified so
that students must analyze the verbal problem descriptions for themselves and seek
clarification where needed. These assignments are such that several alternative approaches
have to be weighed and the most suitable implemented.

Solution Design

Please describe the design experiences common to all course sections.

See above

Assessment methods:

- 5% for 9 labs (attendance);
- 5% for 8 at-home programming assignments;
- 10% for 8 proctored lab tests on these assignments;
- 10% for 8 quizzes;
- 5% for 8 on-line homeworks;
- 20% midterm;
- 20% proctored programming exercise (3 hr. lab final);
- 25% final exam.

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.

Computer Science & Engineering Course Syllabi-8

The following topics are situated in the broader context of engineering practice:
- problem analysis
- testing & debugging
- introduction to OO Design & software engineering
- "honoring the contract" specified by a class interface
- the team exercise in lab (see above)

Also, I invite the ACM & IEEE student chapters to address the class, and strongly encourage
membership in these organizations.

Relationship of course to program outcomes: The contribution of CS12 to program
outcomes (a)-(k) or (1) – (9) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Use recursion to solve certain programming problems
elegantly

3 0 0 0 0 0 0 0 0 0 3

Use pointers to access data 1 0 0 0 0 0 0 0 0 0 3
Develop pointer-based linked lists 1 0 0 0 0 0 0 0 0 0 3
Understand the advantages of abstract data types 2 0 0 0 0 0 0 0 0 0 3
Use and understand the advantages of libraries 1 0 1 0 0 0 0 0 0 0 3
Convert a problem description into a set of about 100-to-200
computer instructions

3 0 3 0 0 0 0 0 0 0 3

Debug programs written by oneself or by others, using a
debugger tool

3 2 2 0 0 0 0 0 0 0 3

Test programs using basic methods 3 3 2 0 0 0 0 0 0 0 3
Develop basic proficiency of working in a Unix environment 0 0 0 0 0 0 0 0 0 0 3

Prepared by, and date of preparation:
Brian Linard – 6/19/2006

Computer Science & Engineering Course Syllabi-9

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 14

Course Title Introduction to Data Structures and
Algorithms

Units 4 Course
Coordinator

Ann Gordon-Ross

Required/elective required URL (if any): www.cs.ucr.edu/cs14

Current Catalog Description: Topics include basic data structures such as arrays, lists,
stacks, and queues; dictionaries including binary search trees and hashing; priority queues
(heaps); introductory analysis of algorithms; sorting algorithms; and object-oriented
programming including abstract data types, inheritance, and polymorphism. Also covers
solving complex problems through structured software development.

Textbook: Data Structures and Algorithms in C++, Michael T. Goodrich, Roberto
Tamassia, David Mount.

References/Materials
See course web page – www.cs.ucr.edu/cs14

Course Goals/Objectives:

1. Design and use arrays, lists, stacks and queues, and know when each is most
appropriate

2. Design and use binary search trees
3. Design and use hash tables
4. Design and use heaps
5. Understand basic algorithm analysis
6. Be able to design and use several different sorting algorithms, understanding the

differences and trade-offs among them
7. Basic understanding of object-oriented programming, including abstract data

types, inheritance and polymorphism
8. Convert a problem description into an algorithm that efficiently solves the

problem
9. Convert a problem description into a program 200-400 lines long
10. Debug programs written by oneself or by others, using a debugger tool
11. Make extensive use of software tools, including debuggers, in writing programs
12. Know how to thoroughly test programs

Prerequisites by Courses and Topics: CS 011/MATH 011: Introduction to Discrete
Structures. Prepositional and predicate calculi, elementary set theory, functions,
relations, proof techniques, elements of number theory, enumeration and discrete
probability. CS 012: Structured and object-oriented programming in C++, emphasizing
good programming principles and development of substantial programs. Topics include

Computer Science & Engineering Course Syllabi-10

recursion, pointers, linked lists, abstract data types, and libraries. Also covers software
engineering principles.

Major Topics Covered in the Course
Algorithm and runtime analysis
Algorithm design
Object Oriented design
Linked Lists
Stacks
Queues
Templates
Advanced issues in inheritance, virtual functions, and polymorphism
Trees
Binary search trees
Advanced sorting
Hashing
Priority Queues/heaps
Balanced trees with emphasis on 2-3 trees and red black trees
Advanced STL

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 3 hours.

Laboratory projects (specify number of weeks on each)
Each lab consists of a three hour block

Lab 1 – linked list design
Lab 2 – Testing and debugging
Lab 3 – Queues
Lab 4 – Stacks
Lab 5 – Advanced issues with inheritance, operator overloading and virtual functions
Lab 6 – STL
Lab 7 – Sorting
Lab 8 – Hashing
Lab 9 – Heaps
Lab 10 – Advanced STL and algorithms

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 30 Data Structures 55
Software Design 5 Prog. Languages 5
Comp. Arch. 5

Oral and Written Communications:
Every student is required to submit at least __1___ written reports (not including exams,
tests, quizzes, or commented programs) of typically __5___ pages and to make __0___
oral presentations of typically _____ minute’s duration. Include only material that is

Computer Science & Engineering Course Syllabi-11

graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

No formal lecture discusses these issues, however, when ever possible I include discussions
on these topics during lecture time. I focus on teaching responsibility for ones actions, life-
long self-teaching, and the implications of producing inferior products including thorough
testing and debugging of code.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Runtime analysis is covered heavily in this course. I spend 2-3 hours of formal presentation
and discussion of runtime and theoretical analysis, After those introductory lectures, I spend
at least 3-5 minutes each lecture discussing the theoretical analysis for the algorithms and
data structures we examine during lecture.

Problem Analysis

Please describe the analysis experiences common to all course sections.

One at home (individual) programming assignment involves runtime analysis of sorting
algorithms. Students are given 5 different programs to sort numbers. The students are not
told what sorting algorithms they are given. Students are required to create input files to
exercise the sorting programs and analyze the runtimes to determine the Big-oh runtime
analysis for each executable. Students are required to submit a full research report outlining
methodology and results.

Solution Design

Please describe the design experiences common to all course sections.

Four of the five at home (individual) programming assignments involve not only translating
a problem description into functional code, but creating well written and efficient object
oriented design. Students are graded heavily on their ability to write good code.

Assessment methods: 60% lecture quizzes, midterm and final; 40% lab attendance,
assignments and practicals

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering

Computer Science & Engineering Course Syllabi-12

experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
This course deals with the following topics

- Problem analysis
- Program design
- Testing and debugging
- Responsibility as an engineer
- Life-long self-teaching

Relationship of course to program outcomes: The contribution of CS14 to program
outcomes (a)-(k) or (1) – (12) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Design and use arrays, lists, stacks and queues, and know
when each is most appropriate

2 0 1 0 0 0 0 0 0 0 3

Design and use binary search trees 2 0 1 0 0 0 0 0 0 0 3
Design and use hash tables 2 0 1 0 0 0 0 0 0 0 3
Design and use heaps 2 0 1 0 0 0 0 0 0 0 3
Understand basic algorithm analysis 3 1 1 0 0 0 0 0 0 0 3
Be able to design and use several different sorting
algorithms, understanding the differences and trade-offs
among them

2 0 3 0 0 0 0 0 0 0 3

Basic understanding of object-oriented programming,
including abstract data types, inheritance and polymorphism

0 0 0 0 0 1 0 0 0 0 3

Convert a problem description into an algorithm that
efficiently solves the problem

3 3 2 0 0 0 0 0 0 0 3

Convert a problem description into a program 200-400 lines
long

2 0 3 0 0 0 0 0 0 0 3

Debug programs written by oneself or by others, using a
debugger tool

1 3 0 0 0 0 0 0 0 0 3

Make extensive use of software tools, including debuggers,
in writing programs

3 0 0 0 0 0 0 0 0 0 3

Know how to thoroughly test programs 2 3 0 0 0 1 0 0 0 0 0

Prepared by, and date of preparation:
Ann Gordon-Ross – 6/19/2006

Computer Science & Engineering Course Syllabi-13

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 61

Course Title Machine Organization and Assembly
Language Programming

Units 4 Course
Coordinator

Brian Linnard

Required/elective elective URL (if any): www.cs.ucr.edu/moodle

Current Catalog Description: An introduction to computer organization. Topics
include number representation, combinational and sequential logic, computer
instructions, memory organization, addressing modes, interrupt, input/output (I/O),
assembly language programming, assemblers, and linkers.

Textbook: Introduction to Computing Systems, 2nd edition, by Patt & Patel (McGraw-
Hill) ISBN 0-07-246750-9

References/Materials
Course website.

Course Goals/Objectives:

- Represent numbers in different bases, including decimal, hexadecimal, and
binary, and perform arithmetic on such numbers

- Understand the basic combinational and sequential digital logic components as
they relate to understanding the basic parts of a computer, including registers and
arithmetic-logic units.

- Understand how computer instructions work for a simple computer addressing
modes

- Understand the von Neumann model of computing
- Understand how computer instructions use memory, including different
- Know how interrupts interact with regular computer execution
- Understand modes of input/output
- Understand the roles of assemblers and linkers
- Understand how some Higher Level Language constructs are built in assembly

language
- Write assembly language programs of 100-200 instructions

Prerequisites by Courses and Topics: MATH CS 005 or CS 010: Introduction to
Computer Science for Science, Mathematics and Engineering I. Solving problems
through structured programming of algorithms on computers, using the C++ object-
oriented language. Topics include variables, expressions, input/output (I/O), branches,
loops, functions, parameters, arrays, strings, file I/O, and classes. Also covers software
design, testing, and debugging; or knowledge of programming or consent of instructor.

Computer Science & Engineering Course Syllabi-14

Major Topics Covered in the Course
13. Binary representations & manipulation of numbers and other information
14. binary logic & its representations in hardware (transistors to gates)
15. combinational logic circuits (adder, decoder, mux)
16. introduction to sequential logic circuits & Finite State Machines
17. introduction to memory system design
18. the von Neumann model, microprocessors & the ISA of the LC-3 microprocessor
19. the complete data path design of the LC-3
20. microprocessor i/o – polling and interrupts
21. (time permitting) detailed analysis of interrupt processing
22. introduction to compilers via analysis of activation record construction
23. Assembly language programming (this is done almost entirely in lab)

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 3 hours.

Laboratory projects (specify number of weeks on each)
The entire lab course is devoted to assembly language programming for the LC-3.

• basic assembly language concepts (3 weeks)
• ASCII i/o and multi-digit integer arithmetic (3 weeks)
• array management (1 weeks)
• subroutines and multiple file linking (2 weeks)

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 5 Data Structures 5
Software Design 10 Prog. Languages 20
Comp. Arch. 60

Oral and Written Communications:
Every student is required to submit at least __0___ written reports (not including exams,
tests, quizzes, or commented programs) of typically _____ pages and to make __0___
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

No structured treatment of these issues: a total of perhaps 2 hours over the quarter spent in
informal discussions, mostly about the immense variety of roles that microprocessors play in
the modern world.

Theoretical Content

Computer Science & Engineering Course Syllabi-15

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

About 10% of the time spent on each topic (see above) is dedicated to locating it in its
theoretical context: representations vs the “ding an sich”; introduction to the idea of a
Turing Machine; computers as implementations of the von Neumann model; state spaces in
the treatment of FSMs; the process of abstraction in analysing systems – especially the
microarchitecture and the ISA as two of several layers of a “computer”; HLLs as an
abstraction of ML; communications between dissimilar systems in introduction to i/o;

Problem Analysis

Please describe the analysis experiences common to all course sections.

In the assembly language component of the course, students are forced to re-think the
notions of programming gleaned from their introduction to a HLL, and recast problems in
terms of what a microprocessor can actually do. Typical of this process is their first
experience of having to distinguish between the separate ASCII characters used to input a
multi-digit integer, the abstract “actual” number those characters represent, and its binary
representation in the microprocessor’s registers. Other examples involve analyzing the low-
level nature of such processes as multiplication; manipulating arrays and memory addresses;
managing multiple components of a program via subroutine calls, traps & interrupts.

Solution Design

Please describe the design experiences common to all course sections.

See above (at this level, problem analysis and solution design are not fully distinguisahble
phases).

Assessment methods: 15% assignments; 10% exercises; 30% tests; 20% midterm; 25%
final

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
I use especially the topics of Turing machines and the von Neumann model to speak about these
men as among the “greats” of our discipline, and to enhance the students’ sense of their identity
as “computer scientists” in that lineage.
Also, I invite the ACM & IEEE student chapters to address the class, and strongly encourage
membership in these organizations.

Relationship of course to program outcomes: The contribution of CS61 to program
outcomes (a)-(k) or (1) – (10) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Computer Science & Engineering Course Syllabi-16

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Represent numbers in different bases, including decimal,
hexadecimal, and binary, and perform arithmetic on such
numbers

3 0 0 0 0 0 0 0 0 0 3

Understand the basic combinational and sequential digital
logic components as they relate to understanding the basic
parts of a computer, including registers and arithmetic-logic
units

3 0 0 0 0 0 0 0 0 0 3

Understand how computer instructions work for a simple
computer addressing modes

2 0 0 0 0 0 0 0 0 0 3

Understand the von Neumann model of computing 3 0 0 0 0 0 0 0 0 0 3
Understand how computer instructions use memory,
including different

2 0 0 0 0 0 0 0 0 0 3

Know how interrupts interact with regular computer
execution

2 0 0 0 0 0 0 0 0 0 3

Understand modes of input/output 1 0 0 0 0 0 0 0 0 0 3
Understand the roles of assemblers and linkers 1 0 0 0 0 0 0 0 0 0 3
Understand how some Higher Level Language constructs
are built in assembly language

2 0 0 0 0 0 0 0 0 0 3

Write assembly language programs of 100-200 instructions 3 0 1 0 1 0 0 0 0 0 3

Prepared by, and date of preparation:
Brian Linard, 6/20/06

Computer Science & Engineering Course Syllabi-17

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 111

Course Title Discrete Structures

Units 4 Course
Coordinator

Marek Chrobak

Required/elective required URL (if any):

Current Catalog Description: Study of discrete mathematical structures with emphasis
on applications to computer science. Topics include asymptotic notation, generating
functions, recurrence equations, elements of graph theory, trees, algebraic structures, and
number theory. Cross-listed with MATH 111.

Textbook: K.R. Rosen, Discrete Mathematics and its Applications, McGraw-Hill.

References/Materials
Lecture notes.

Course Goals/Objectives:

- To learn how to use correct mathematical terminology and notation.
- To learn the methods of formal mathematical reasoning and proof techniques,

including proofs by contradiction and by induction.
- To learn how to model real-life problems using discrete mathematical structures:

sets, sequences, combinations, permutations, graphs, trees, relations, and
algebraic structures.

- To master the concept of asymptotic notation and its application to estimating
running time of various algorithms.

- To learn fundamentals of number theory and its applications to cryptographic
protocols.

- To learn techniques for solving recurrence equations, and their applications to
counting and to analyzing the complexity of divide-and-counter algorithms.

- To learn the basic concepts in graph theory, including connectivity, cycles,
planarity, coloring.

Prerequisites by Courses and Topics: CS 010: Introduction to Computer Science for
Science, Mathematics and Engineering I; CS 011/MATH 011: Introduction to Discrete
Structures; MATH 009C or MATH 09HC: First Year Calculus; Introduction to the
integral calculus of functions of one variable..

Major Topics Covered in the Course: Asymptotic notation: asymptotic behavior of
functions, polynomial, exponential, and logarithmic functions. Number theory: modular
arithmetic, Chinese Remaider Theorem, Euler's Theorem, the RSA. Advanced counting:
inclusion-exclusion, generating functions, solving recurrence equations. Elements of

Computer Science & Engineering Course Syllabi-18

graph theory: undirected, directed graphs, connectivity, planarity, Euler cycles, spanning
trees. Trees. Algebraic structures: monoids, groups, more modular arithmetic,
permutation groups, rings, homomorphisms, isomorphisms, quotient structures. Possible
other topics: error-correcting codes, matrix games

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; discussion, 1 hour.

Laboratory projects (specify number of weeks on each)
None.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 25% Data Structures
Software Design Prog. Languages
Comp. Arch.

Oral and Written Communications:
Every student is required to submit at least ___0__ written reports (not including exams,
tests, quizzes, or commented programs) of typically _____ pages and to make _____
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

N/A

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Discrete mathematics, 100%

Computer Science & Engineering Course Syllabi-19

Problem Analysis
Please describe the analysis experiences common to all course sections.

Students model real-life problems and solve them using discrete mathematical structures.
Most of these problems arise in computer applications: for example cryptography,
asymptotic analysis of algorithms, and other.

Solution Design

Please describe the design experiences common to all course sections.

The class does not cover engineering design as such. But the class provides background
needed for the design of data structures in algorithms that are covered in CS141.

Assessment methods: 15% assignments; 10% exercises; 30% tests; 20% midterm; 25%
final

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
N/A

Relationship of course to program outcomes: The contribution of CS111 to program
outcomes (a)-(k) or (1) – (7) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

To learn how to use correct mathematical terminology and
notation.

3 0 0 0 0 0 0 0 0 0 3

To learn the methods of formal mathematical reasoning and
proof techniques, including proofs by contradiction and by
induction.

3 0 0 0 0 0 0 0 0 0 3

To learn how to model real-life problems using discrete
mathematical structures: sets, sequences, combinations,
permutations, graphs, trees, relations, and algebraic
structures.

2 0 0 0 0 0 0 0 0 0 3

To master the concept of asymptotic notation and its
application to estimating running time of various algorithms.

3 0 0 0 0 0 0 0 0 0 3

To learn fundamentals of number theory and its applications
to cryptographic protocols.

2 0 0 0 0 0 0 0 0 0 3

To learn techniques for solving recurrence equations, and
their applications to counting and to analyzing the
complexity of divide-and-counter algorithms.

2 0 0 0 0 0 0 0 0 0 3

Computer Science & Engineering Course Syllabi-20

To learn the basic concepts in graph theory, including
connectivity, cycles, planarity, coloring.

1 0 0 0 0 0 0 0 0 0 3

Prepared by, and date of preparation: Marek Chrobak, June 15 2006

Computer Science & Engineering Course Syllabi-21

COURSE DESCRIPTION

Dept., Number EE/CS 120A Course Title Intro. to Embedded Systems
Units 5 Course Coordinator Frank Vahid / Sheldon Tan
Required/elective Req URL (if any): www.cs.ucr.edu/cs120a

Current Catalog Description
Design of digital systems. Topics include Boolean algebra; combinational and sequential logic design; design and
use of arithmetic-logic units, carry-lookahead adders, multiplexors, decoders, comparators, multipliers, flip-flops,
registers, and simple memories; state-machine design; and basic register-transfer level design. Laboratories involve
use of hardware description languages, synthesis tools, programmable logic, and significant hardware prototyping.
Cross-listed with CS/EE 120A.

Textbook
Required: Digital Design, Frank Vahid, J. Wiley and Sons, ISBN 0-471-46784-7

References/Materials
 Logic and Computer Design Fundamentals and Xilinx Student Edition 4.2 Package, 3/E , by
Mano and Kime, 3rd edition

Course Goals/Objectives

- Able to perform the conversion among different number systems; familiar with basic logic gates – AND,

OR & NOT, XOR, XNOR; independently or work in team to build simple logic circuits using basic.
- Understand Boolean algebra and basic properties of Boolean algebra; able to simplify simple Boolean

functions by using the basic Boolean properties.
- Able to design simple combinational logics using basics gates. Able to optimize simple logic using

Karnaugh maps, understand “don’t care”.
- Familiar with basic sequential logic components: SR Latch, D Flip-Flop and their usage and able to analyze

sequential logic circuits.
- Understand finite state machines (FSM) concept and work in team to do sequence circuit design based

FSM and state table using D-FFs.
- Familiar with basic combinational and sequential components used in the typical datapath designs:

Register, Adders, Shifters, Comparators; Counters, Multiplier, Arithmetic-Logic Units (ALUs), RAM. Able
to do simple register-transfer level (RTL) design.

- Able to understand and use one high-level hardware description languages (VHDL or Veriliog) to design
combinational or sequential circuits.

- Understand that the design process for today’s billion-transistor digital systems becomes a more
programming based process than before and programming skills are important.

Prerequisites by Courses and Topics
CS 61 machine organization

Computer Science & Engineering Course Syllabi-22

Major Topics Covered in the Course
Topics include Boolean algebra; combinational and sequential logic design; design and use of
arithmetic-logic units, carry-lookahead adders, multiplexors, decoders, comparators, multipliers,
flip-flops, registers, and simple memories; state-machine design; and basic register-transfer level
design. Laboratories involve use of hardware description languages, synthesis tools,
programmable logic, and significant hardware prototyping.

Laboratory schedule: number of sessions per week and duration of each session
Two three-hour sessions per week

Laboratory projects (specify number of weeks on each)
Lab 1: Hardware breadboarding (1 week)
Lab 2: Schematic editor and simulation tools (1 week)
Lab 3: Hierarchical design and technology mapping (1 week)
Lab 4: Carry lookahead adder and multiplier (1 week)
Lab 5: Combinational logic design (1 week)
Lab 6: Latches and flip-flops (1 week)
Lab 7: Designing sequential circuits (1 week)
Lab 8: VGA monitor controller design (2 weeks)

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 15% Data Structures 10%
Software Design 20% Prog. Languages 20%
Comp. Arch. 35%

Oral and Written Communications:
Every student is required to submit at least __8___ written reports (not including exams,
tests, quizzes, or commented programs) of typically __2___ pages and to make __0___
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Theoretical Content

Computer Science & Engineering Course Syllabi-23

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Boolean algebra – 6 lecture hours
Finite-state machines – 3 lecture hours

Problem Analysis

Please describe the analysis experiences common to all course sections.

Analysis of size and performance of two-level and multi-level logic circuits

Solution Design

Please describe the design experiences common to all course sections.
Lecture: Capturing desired circuit behavior using Boolean equations, truth tables, finite-state
machines, or high-level state machines, and converting such behavior to circuits of gates and
registers.
Lab: Design of circuits using schematic capture and using tools to map to FPGAs.

Assessment methods
Lecture: Quizzes, midterm exam, final exam, homeworks, and in-lecture exercises
Lab: Demos, reports, code

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
This course allows students to understand the internal design of computer processors and to
practice in design and optimization of logic circuits both theoretically and experimentally. Also,
Teaches use of modern tools, and teaches hands-on debugging and troubleshooting.

Relationship of course to program outcomes: The contribution of Engr 180 to program
outcomes (a)-(k) or (1) – (5) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Computer Science & Engineering Course Syllabi-24

Able to perform the conversion among different
number systems; familiar with basic logic gates –
AND, OR & NOT, XOR, XNOR; independently or
work in team to build simple logic circuits using
basic.

2 3 3 2 2 1 1 1 0 0 3

Understand Boolean algebra and basic properties of
Boolean algebra; able to simplify simple Boolean
functions by using the basic Boolean properties. 2 3 3 2 2 1 1 1 0 0 3

Able to design simple combinational logics using
basics gates. Able to optimize simple logic using
Karnaugh maps, understand “don’t care”. 2 3 3 2 2 1 1 1 0 0 3

Familiar with basic sequential logic components: SR
Latch, D Flip-Flop and their usage and able to
analyze sequential logic circuits. 2 3 3 2 2 1 1 1 0 0 3

Understand finite state machines (FSM) concept and
work in team to do sequence circuit design based
FSM and state table using D-FFs. 2 3 3 2 2 1 1 1 0 0 3

Familiar with basic combinational and sequential
components used in the typical datapath designs:
Register, Adders, Shifters, Comparators; Counters,
Multiplier, Arithmetic-Logic Units (ALUs), RAM.
Able to do simple register-transfer level (RTL)
design. 2 3 3 2 2 1 1 1 0 0 3
Able to understand and use one high-level hardware
description languages (VHDL or Veriliog) to design
combinational or sequential circuits. 0 0 3 0 0 0 0 0 0 0 3

Understand that the design process for today’s
billion-transistor digital systems becomes a more
programming based process than before and
programming skills are important.

0 0 3 0 0 0 0 0 0 0 3

Prepared by, and date of preparation:
Tom Payne with help from Harry Hsieh, Vladimir Fonoberov, and Victor Hill, 6/27/06

Computer Science & Engineering Course Syllabi-25

COURSE DESCRIPTION

Dept., Number EE/CS 120B Course Title Intro. to Embedded Systems
Units 5 Course Coordinator Frank Vahid / Harry Hsieh
Required/elective Req URL (if any): www.cs.ucr.edu/cs120b

Current Catalog Description:
Introduction to hardware and software design of digital computing systems embedded in
electronic devices (such as digital cameras or portable video games). Topics include
custom and programmable processor design, standard peripherals, memories, interfacing,
and hardware/software tradeoffs. Laboratory involves use of synthesis tools,
programmable logic, and microcontrollers and development of working embedded
systems. Cross-listed with EE 120B.

Textbook
Required: "Embedded System Design: A Unified Hardware/Software Approach", Vahid and
Givargis, Wiley & Sons, 2002
Required: VHDL : A Starter's Guide (2nd Edition)", Sudhakar Yalamanchili, ISBN 0131457357,
Prentice Hall, 2004

References/Materials
Recommended: "C and the 8051 -- 3rd edition", Thomas Schultz, ISBN 1-58961-237-X,
Pagefree Publishing Inc, 2004.
Recommended: The C Programming Language, Second Edition, Kernighan and Ritchie, Prentice
Hall, ISBN 0-13-110362-8

Course Goals/Objectives

Computer Science & Engineering Course Syllabi-26

1: Understand chip technology trends Moore's law the nature of embedded computing the need to
balance competing design factors and the growing productivity gap.
2: Calculate estimated time and cost impacts of various design decisions
3: Describe system behavior as a state machine and design a controller digital circuit
implementation
4: Describe system behavior as extended state machines and design a custom processor
(controller and datapath)implementation
5: Describe system behavior as a sequential algorithm and design a custom processor
implementation
6: Understand basic pipelining and hazards
7: Design a basic but working instruction-set processor
8: Understand assembly language and write simple assembly-level programs
9: Understand the function design and use of common peripherals: timers UART PWM A2D
D2A converters.
10: Understand communication methods including I/O schemes interrupts direct-memory access
and arbitration
11: Draw timing diagrams to represent communication
12: Understand hardware/software trade-off through examples.
13: Write VHDL and program FPGAs write assembly and C code for microcontroller and build
embedded systems in a laboratory environment.
14: Make short presentations in class about contemporary topics concerning embedded systems
such as security energy novel circuit structures graphic interfaces ubiquitous computing and
ethics.

Prerequisites by Courses and Topics:
Lecture, 3 hours; laboratory, 6 hours. Prerequisite(s): CS 120A/EE 120A.

Major Topics Covered in the Course
Custom and programmable processor design, standard peripherals, memories, interfacing, and
hardware/software tradeoffs. Laboratory involves use of synthesis tools, programmable logic,
and microcontrollers and development of working embedded systems.

Laboratory schedule: number of sessions per week and duration of each session
Two sessions per week, three hours per session.

Laboratory projects (specify number of weeks on each)
Lab 1: Introduction to VHDL and Aldec-HDL (0.5 weeks)
Lab 2: Simple ALU (0.5 weeks)
Lab 3: Introduction to the Digilent D2SB (1 week)
Lab 4: Sequential Circuits (1 week)
Lab 5: Converting an Algorithm to a Circuit (2 weeks)
Lab 6: Introduction to the 8051 Microcontroller (0.5 weeks)
Lab 7: Using the 8051 to Interface to a Keypad (1.5 weeks)
Lab 8: FPGA and 8051 Tone Generation (2 weeks)

Computer Science & Engineering Course Syllabi-27

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 15% Data Structures 10%
Software Design 20% Prog. Languages 20%
Comp. Arch. 20% 15%

Oral and Written Communications:
Every student is required to submit at least __7___ written reports (not including exams,
tests, quizzes, or commented programs) of typically __2___ pages and to make __2___
oral presentations of typically __5___ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

First week discusses (in lecture and in textbook) subject of applying embedded systems for
improved quality of life and safety, including discussion of systems like medical devices,
automobiles, etc.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Finite-state machines – 3 lecture hours
High-level finite state machines – 3 lecture hours

Problem Analysis

Please describe the analysis experiences common to all course sections.

Analysis of size and performance of custom-designed processing circuits, compared with
general-purpose processing circuits.

Solution Design

Please describe the design experiences common to all course sections.

Computer Science & Engineering Course Syllabi-28

Lecture: Design of custom-processing circuits from high-level behavioral descriptions.
Design of computing systems consisting of microprocessor, memory, and peripherals.
Lab: Design of circuits using VHDL and tools to map to FPGAs. Design of programs using
C using C compilation tools to map to microcontrollers.

Assessment methods
Lecture: Quizzes, midterm exam, final exam, homeworks, and in-lecture exercises
Lab: Demos, reports, code, and lab practical exam

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
Emphasizes tradeoffs among different implementation options, especially tradeoffs among
custom processing circuits (“hardware”) and programs on general-purpose processors
(“software”).

Relationship of course to program outcomes: The contribution of CS120b to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Understand chip technology trends Moore's law the nature of
embedded computing the need to balance competing design
factors and the growing productivity gap.

3 0 0 0 0 0 0 0 0 2 3

Calculate estimated time and cost impacts of various design
decisions

3 0 0 0 0 1 0 0 0 1 3

Describe system behavior as a state machine and design a
controller digital circuit implementation

3 0 0 0 0 0 0 0 0 0 3

Describe system behavior as extended state machines and
design a custom processor (controller and data
path)implementation

3 0 0 0 0 0 0 0 0 0 3

Describe system behavior as a sequential algorithm and
design a custom processor implementation

3 0 0 0 0 0 0 0 0 0 3

Understand basic pipelining and hazards 1 0 0 0 0 0 0 0 0 0 3
 Design a basic but working instruction-set processor 3 0 0 0 0 0 0 0 0 0 3
Understand assembly language and write simple assembly-
level programs.

1 0 0 0 0 0 0 0 0 0 3

Understand the function design and use of common
peripherals: timers UART PWM A2D D2A converters.

2 0 0 0 0 0 0 0 0 0 3

Convert a problem description into a set of about 50-100
computer instructions

1 0 0 0 0 0 0 0 0 0 3

 Understand communication methods including I/O schemes
interrupts direct-memory access and arbitration

1 0 0 0 0 0 0 0 0 0 3

Draw timing diagrams to represent communication 1 0 1 0 1 0 0 0 0 0 3
Understand hardware/software trade-off through examples. 1 0 1 0 1 0 0 0 0 0 3
Write VHDL and program FPGAs write assembly and C code
for microcontroller and build embedded systems in a

3 0 0 0 0 0 0 0 0 0 3

Computer Science & Engineering Course Syllabi-29

laboratoryenvironment.
Make short presentations in class about contemporary topics
concerning embedded systems such as security energy novel
circuit structures graphic interfaces ubiquitous computing and
ethics.

1 0 0 0 0 2 3 0 0 2 3

Prepared by, and date of preparation:
Frank - 06/15/06

Computer Science & Engineering Course Syllabi-30

COURSE DESCRIPTION

Dept., Number CS 122A Course Title Intro. to Embedded Systems
Units 5 Course Coordinator Frank Vahid / Harry Hsieh
Required/elective Req URL (if any): www.cs.ucr.edu/cs122a

Current Catalog Description
Covers software and hardware design of embedded computing systems. Topics include hardware
and software code sign, advanced programming paradigms including state machines and
concurrent processes, real-time programming and operating systems, basic control systems, and
modern chip and design technologies. Laboratories involve use of microcontrollers, embedded
microprocessors, programmable logic and advanced simulation, and debug environments.

Textbook
"C and the 8051 -- 3rd edition", Thomas Schultz, ISBN 1-58961-237-X, Pagefree Publishing Inc,
2004. www.CAndThe8051.com
"VHDL : A Starter's Guide (2nd Edition)", Sudhakar Yalamanchili, ISBN 0131457357, Prentice
Hall, 2004.

References/Materials
The C Programming Language, Second Edition, Kernighan and Ritchie, Prentice Hall, ISBN 0-
13-110362-8.

Course Goals/Objectives
1: Understand competing design metrics and cost and time implications of various design
decisions
2: Understand hardware/software trade-offs
3: Be able to use and choose among different behavior models like FSMD sequential programs
HCFSM and dataflow languages for describing system behavior.
4: Understand basic concurrent process execution synchronization and communication methods
5: Compute valid and analyze invalid real-time schedules with techniques such as Rate-
Monotonic Scheduling and Earliest-Deadline-First Scheduling.
6: Be able to recognize systems that represent Open-Loop and Closed-Loop control systems.
7: Design and use PID controllers.
8: Understand basic two-level and multi-level logic minimization techniques and apply to simple
logic equations.
9: Understand reliability issues and how to use redundancies.
10: Write VHDL and program FPGA and FPGA platforms. Write assembly and C code for
microcontroller and multimedia processor utilize the peripherals and build embedded systems in
a laboratory environment.
11: Make short presentations in class about contemporary topics concerning embedded systems
such as ubiquitous computing energy wireless security nano-tech novel circuit structures
government and ethics.

Computer Science & Engineering Course Syllabi-31

Prerequisites by Courses and Topics
CS 012, CS 120B/EE 120B

Major Topics Covered in the Course
Covers software and hardware design of embedded computing systems. Topics include hardware
and software code sign, advanced programming paradigms including state machines and
concurrent processes, real-time programming and operating systems, basic control systems, and
modern chip and design technologies. Laboratories involve use of microcontrollers, embedded
microprocessors, programmable logic and advanced simulation, and debug environments.

Laboratory schedule: number of sessions per week and duration of each session
Two sessions per week, three hours per session.

Laboratory projects (specify number of weeks on each)
Lab 1 (1 week): VHDL simulation and synthesis, FPGAs, debug tools and methods
Lab 2 (1 week): Driver for the 4x7-segment LEDs using time multiplexing
Lab 3 (1 week): Test and debug existing code – Broken PS2 keyboard interface
Lab 4 (1 week): Microcontroller programming – Interfacing a microcontroller with an LCD
Lab 5 (1 week): Microcontroller programming, timers and interrupts – Reflex Timer
Project (5 weeks): Course project: DDR-like game involving Playstation controller input,
LED/LCD display, synchronization with music, timing-based scoring, etc.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 15% Data Structures 10%
Software Design 10% 10% Prog. Languages 10% 10%
Comp. Arch. 20% 15%

Oral and Written Communications:
Every student is required to submit at least __7___ written reports (not including exams,
tests, quizzes, or commented programs) of typically __3___ pages and to make __4___
oral presentations of typically __7___ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Computer Science & Engineering Course Syllabi-32

First week discusses (in lecture and in textbook) subject of applying embedded systems for
improved quality of life and safety, including discussion of systems like medical devices,
automobiles, etc. Specific lecture covers designing safe systems.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Finite-state machines – 1 lecture hour
High-level finite state machines – 2 lecture hours
Concurrent process model – 2 lecture hours
Computation models versus programming languages – 2 lecture hours

Problem Analysis

Please describe the analysis experiences common to all course sections.

Extensive analysis of size and performance of custom-designed processing circuits,
compared with general-purpose processing circuits. Analysis of design time to build
different types of circuits using different technologies. Extensive tradeoff analysis
throughout course.

Solution Design

Please describe the design experiences common to all course sections.
Lecture: Design of custom-processing circuits from high-level behavioral descriptions.
Design of computing systems consisting of microprocessor, memory, and peripherals.
Design of time-constrained programs using interrupts. Design of FPGA fabrics.
Lab: Design of circuits using VHDL and tools to map to FPGAs. Design of programs using
C using C compilation tools to map to microcontrollers. Consideration of tradeoffs among
those two implementation styles to create a final working project consisting of both.

Assessment methods
Lecture: Quizzes, midterm exam, final exam, homeworks, and in-lecture exercises
Lab: Demos, reports, code.

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
Emphasizes tradeoffs among different implementation options, especially tradeoffs among
custom processing circuits (“hardware”) and programs on general-purpose processors
(“software”).

Computer Science & Engineering Course Syllabi-33

Relationship of course to program outcomes: The contribution of CS122a to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Understand competing design metrics and cost and time
implications of various design decisions

2 0 1 0 0 0 0 0 0 0 3

Understand hardware/software trade-offs 2 0 1 0 0 0 0 0 0 0 3
Be able to use and choose among different behavior models
like FSMD sequential programs HCFSM and dataflow
languages for describing system behavior.

2 0 2 0 2 0 0 0 0 0 3

Understand basic concurrent process execution
synchronization and communication methods

2 0 0 0 0 0 0 0 0 0 3

Compute valid and analyze invalid real-time schedules with
techniques such as Rate-Monotonic Scheduling and Earliest-
Deadline-First Scheduling.

3 1 0 0 0 0 0 0 0 0 3

Be able to recognize systems that represent Open-Loop and
Closed-Loop control systems.

1 0 0 0 1 0 0 0 0 0 3

Design and use PID controllers. 3 0 2 0 2 0 0 0 0 0 3
Understand basic two-level and multi-level logic
minimization techniques and apply to simple logic equations.

2 0 0 0 0 0 0 0 0 0 3

Understand reliability issues and how to use redundancies. 1 0 0 0 0 0 0 0 0 0 3
Write VHDL and program FPGA and FPGA platforms. Write
assembly and C code for microcontroller and multimedia
processor utilize the peripherals and build embedded systems
in a laboratory environment.

3 1 1 0 0 0 0 0 0 0 3

Make short presentations in class about contemporary topics
concerning embedded systems such as ubiquitous computing
energy wireless security nano-tech novel circuit structures
government and ethics.

0 0 0 0 0 2 3 0 0 2 3

Prepared by, and date of preparation:
Harry - 06/15/06

Computer Science & Engineering Course Syllabi-34

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 122B

Course Title Advanced Embedded and Real-Time
Systems

Units 5 Course
Coordinator

Harry Hsieh / Frank Vahid

Required/elective elective URL (if any): www.cs.ucr.edu/~harry/cs122b

Current Catalog Description: Further exploration of state-of-the-art aspects of building
embedded computer systems. Topics include real-time programming, synthesis of
coprocessor cores, application-specific processors, hardware and software co-simulation
and co-design, low-power design, reconfigurable computing, core-based design, and
platform-based methodology.

Textbook:

References/Materials
Embedded System Design: A Unified Hardware/Software Approach, Vahid and Givargis, Wiley
& Sons, 2002, Accompanying Web page .

Real Time Systems and Programming Languages: Ada 95, Real-Time Java and Real-Time
C/POSIX by Alan Burns, Andrew J. Wellings, 3rd edition (April 5, 2001) Addison-Wesley
Publishing.

Embedded System Design by Peter Marwedel, Kluwer Academic Publishers, 2003, ISBN 1-
4020-7690-8.

Course Goals/Objectives:

- Be able to write small real-time program utilizing semaphores and other
synchronization constructs.

- Be able to write system level program utilizing the concept of modules channels
and other system level entities.

- Understand scheduling for concurrent processes
- Understand performance/size/power trade-off in the embedded architecture
- Understand and learn to use Application Specific Instruction Processors

Prerequisites by Courses and Topics: CS 012: Introduction to Computer Science for
Science, Mathematics and Engineering II, CS 122A: Intermediate to Embedded and Real-
Time Systems. Covers software and hardware design of embedded computing systems.
Topics include hardware and software co-design, advanced programming paradigms
including state machines and concurrent processes, real-time programming and operating
systems, basic control systems, and modern chip and design technologies. Laboratories
involve use of microcontrollers, embedded microprocessors, programmable logic and
advanced simulation, and debug environments.

Major Topics Covered in the Course

Computer Science & Engineering Course Syllabi-35

Lecture topic includes method and technology of embedded system design, how to deal with
hardware/software/firmware, embedded system specification, real-time scheduling and
programming, synchronization and atomic actions, system-level transformation, low-power
design, and software testing and reliability. Lab topics include synchronization and embedded
OS, programming with application specific instruction processor (both standard and
customizable), using system description languages, and using platform FPGA.

Computer Science & Engineering Course Syllabi-36

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 6 hours

Laboratory projects (specify number of weeks on each)

24. Tornado: (1.5 weeks) programming with embedded OS for synchronization of concurrent
processes.

25. Trimedia: (1.5 weeks) programming ASIP for DVD application.
26. SystemC: (1.5 weeks) programming with system design language.
27. Microblaze: (1.5 weeks) programming platform FPGA.
28. Tensilica: (1.5. weeks) programming flexible ISA for performance/power trade-off.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 20% Data Structures 10%
Software Design 5% 15% Prog. Languages 10% 20%
Comp. Arch. 20%

Oral and Written Communications:
Every student is required to submit at least ___9__ written reports (not including exams,
tests, quizzes, or commented programs) of typically __4___ pages and to make ___1__
oral presentations of typically ____15_ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

First week discusses (in lecture) subject of applying embedded systems for improved quality
of life and safety, including discussion of systems like medical devices, automobiles, robots,
etc. Student presentations include application of embedded system to socially related
projects (e.g. earthquake alarm, alternative energy sources, medical robots).

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Embedded system application and method of design – 1 lecture hour
Formal Specification (StateChart/SDL/PetriNet/MSC/UML/PN/SDL) – 5 lecture hours
Real-time Scheduling and synchronization of concurrent processes – 5 lecture hours
High level optimization – 2 lecture hours
Low Power Techniques – 2 lecture hours

Problem Analysis

Computer Science & Engineering Course Syllabi-37

Please describe the analysis experiences common to all course sections.
Analysis of area/performance/power/design-time/reliability of advance embedded system
design which may consists of both hardware/software solution on the same implementation.
Extensive trade-off analysis throughout.

Solution Design

Please describe the design experiences common to all course sections.

Lecture: Design of advance embedded systems (consists of hardware/software/firmware)
from high-level behavioral descriptions. Design of concurrent systems, design of low-
power systems and high reliable system.
Lab: Design of concurrent systems using Embedded OS, ASIP, high level behavioral
description, platform-FPGA, and customizable ASIP.

Assessment methods:

Lecture: Midterm exam, final exam, homeworks.

Lab: Demo, reports, code, and exam.

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
Emphasizes tradeoffs among different implementation options, especially tradeoffs among use of
high level description languages, different scheduling algorithms, different techniques for low
power and reliability, different customizable instructions set architecture. The metrics for trade-
offs are performance/power/area/design_time/reliability.

Relationship of course to program outcomes: The contribution of CS122B to program
outcomes (a)-(k) or (1) – (5) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Be able to write small real-time program utilizing
semaphores and other synchronization constructs.

2 0 1 0 0 0 0 0 0 2 3

Be able to write system level program utilizing the concept of
modules channels and other system level entities.

2 0 1 0 0 0 0 0 0 0 3

Understand scheduling for concurrent processes 2 0 2 0 2 0 0 0 0 0 3
Understand performance/size/power trade-off in the
embedded architecture

2 0 0 0 0 0 0 0 0 0 3

Understand and learn to use Application Specific Instruction
Processors

3 1 0 0 0 0 0 0 0 0 3

Prepared by, and date of preparation: Harry Hsieh, June 15 2006

Computer Science & Engineering Course Syllabi-38

COURSE DESCRIPTION

Dept., Number CS130 Course Title
Units Course Coordinator v zordan
Required/elective URL (if any): www.cs.ucr.edu/~vbz/cs130.html

Current Catalog Description
A study of the fundamentals of computer graphics necessary to design and build graphics
applications. Examines raster graphics algorithms including scan-converting graphics primitives,
anti-aliasing, and clipping. Also covers geometric transformations, viewing, solid modeling
techniques, hidden-surface removal algorithms, color models, illumination, and shading.
Individual and group projects are assigned.

Textbook
Computer Graphics with OpenGL by Hearn and Baker

References/Materials
n/a

Course Goals/Objectives
1: To understand the software and hardware processes involved in the creation
of synthetic imagery along with difficulties and limitations unique to such
discrete images.
2: To obtain a working knowledge of fundamental algorithms which allow
description and display of graphics primitives including lines, curves,
polygons, and surfaces.
3: To obtain a working knowledge of 3D transformations, including simple
affine, perspective, and composite transformations.
4: To become familiar with simple synthetic illumination models and
fundamental techniques for rendering synthetic images from 3D scenes as well
as to be exposed to aspects related to movement within these scenes.

Prerequisites by Courses and Topics
Prerequisite(s): CS 141, MATH 113 (MATH 113 may be taken concurrently); or consent of
instructor.

Major Topics Covered in the Course

Computer Science & Engineering Course Syllabi-39

geometry representations and transformations; rendering and light models; rasterization and anti-
aliasing techniques; and basic animation.

Laboratory schedule: number of sessions per week and duration of each session
1 x 3 hour session per week.

Laboratory projects (specify number of weeks on each)
week 1 intro to opengl - draw lines
week 2 intro to maya - modeling/UI
week 3 solid constructive geometry (CSG) in maya
week 4 maya scripting language
week 5 prep/open lab for project 1
week 6 opengl cameras/primitives
week 7 maya rendering and shading
week 8 prep/open lab for project 2
week 9 maya procedural animation
week 10 make-up

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 25 15 Data Structures 5
Software Design 10 15 Prog. Languages 10 10
Comp. Arch. 10

Oral and Written Communications:
Every student is required to submit at least ___0__ written reports (not including exams,
tests, quizzes, or commented programs) of typically _____ pages and to make _____
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

n/a

Theoretical Content

Computer Science & Engineering Course Syllabi-40

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

geometry manipulation - 2.5 lectures
matrix transformation - 2 lectures
applied linear algebra - 1.5 lecture
physics of light transfer - 2 lectures

Problem Analysis

Please describe the analysis experiences common to all course sections.

problem solving in class, in projects, in exams related to geometry, physics, motion control

Solution Design

Please describe the design experiences common to all course sections.
two - three programming intensive projects requiring independent design and
implementation

Assessment methods
Programs (2 x 15% = 30%)
Laboratory (15%)
Quizzes (2 x 15% = 30%)
Final exam (25%)

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
must think abstractly about various scientific and engineering principles related to graphical
primitives and efficient algorithms and then structure these thought into concrete
implementation

Computer Science & Engineering Course Syllabi-41

Relationship of course to program outcomes: The contribution of CS130 to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

To understand the software and hardware processes involved
in the creation of synthetic imagery along with difficulties
and limitations unique to such discrete images.

3 0 1 0 1 0 0 0 0 0 3

To obtain a working knowledge of fundamental algorithms
which allow description and display of graphics primitives
including lines curves polygons and surfaces.

3 0 0 0 0 0 0 0 0 0 3

To obtain a working knowledge of 3D transformations
including simple affine perspective and composite
transformations.

3 0 0 0 0 0 0 0 0 0 3

To become familiar with simple synthetic illumination
models and fundamental techniques for rendering synthetic
images from 3Dscenes as well as to be exposed to aspects
related to movement within these scenes.

3 0 0 0 0 0 0 0 0 0 3

Prepared by, and date of preparation:
Victor Zordan – 06/15/06

Computer Science & Engineering Course Syllabi-42

COURSE DESCRIPTION

Dept., Number CS133 Course Title Computational Geometry
Units 4 Course Coordinator Dimitrios Gunopulos
Required/elective Elective URL (if any): http://www.cs.ucr.edu/~dg/cs133.ht

ml

Current Catalog Description
Introduction to the design of geometry algorithms. Covers the basic computational geometry
concepts and techniques used in graphics, robotics, and engineering design. Topics include
polygons and polytops, convex hulls, and voronoi diagrams.

Textbook
Computational Geometry in C (second edition) by Joseph O'Rourke, Cambridge University Press
1998

References/Materials

Course Goals/Objectives
1: To become familiar with fundamental concepts in computational geometry,
including convex hulls, Voronoi diagrams, Delaunay triangulations, and other.
2: To learn the techniques for building robust geometric algorithms using
efficient data structures, and to become proficient in implementing them.
3: To understand important applications of computational geometry in computer
graphics, information systems, data mining, robotics, and other.
4: To learn how to model real life computational tasks using paradigms from
computational geometry.

Prerequisites by Courses and Topics
CS 141, MATH 113, or equivalents.

Major Topics Covered in the Course
Visibility and Art Gallery Theorems (2 weeks)
Polygon Triangulation (2 weeks)
Convex Hulls in Two Dimensions (2 weeks)
Voronoi Diagrams(2 weeks)
Arrangements (1 week)
Search and Intersection (1 week)

Laboratory schedule: number of sessions per week and duration of each session

Computer Science & Engineering Course Syllabi-43

 Class: 3 hours per week. Lab: One three hour laboratory session per week

Labs 1 and 2: introduction to computational geometry concepts
Labs 3 and 4: introduction to OpenGl
Labs 5, 6 and 7: working on the first project
Labs 8, 9and 10: working on the second project

Laboratory projects (specify number of weeks on each)
2 projects:
Project 1: implement, test, and visualize the results of a triangulation algorithm (3 weeks)
Project 2: understand a computational geometry problem, design an algorithm to solve it,
theoretically derive the asymptotic running time of the solution, implement the solution, and
provide a systems to visualize the results (3 weeks)

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 30% 30% Data Structures 15%
Software Design 15% 10% Prog. Languages
Comp. Arch.

Oral and Written Communications:
Every student is required to submit at least ___2__ written reports (not including exams,
tests, quizzes, or commented programs) of typically __2-3__ pages and to make __0__
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Computer Science & Engineering Course Syllabi-44

Algorithms and and analysis for Visibility problems in two dimensional polygons (Art
Gallery Theorems) (2 weeks)
Algorithms for Polygon Triangulation, Trapezoidation and Partitioning into convex pieces
(2 weeks)
Algorithms and lower bound analysis for computing Convex Hulls in two dimensions (2
weeks)
Algorithms and applications for Voronoi Diagrams and Delaunay Triangulations (2 weeks)
Algorithms and lower bounbs for Arrangements of lines in two dimensions (1 week)
Search and Intersection (1 week)

Problem Analysis

Please describe the analysis experiences common to all course sections.

The students learn about advanced algorithmic concepts using geometric problems.
Geometric problems are intuitive and easy to understand, yet admit sophisticated and
complex solutions. The students learn to design solutions to such problems, evaluate their
solutions theoretically, and implement their solutions and visualize their solution.

Solution Design

Please describe the design experiences common to all course sections.
The students have to design an efficient algorithm that solves the problems described in the
project descriptions, prove the efficiency of their solution, and implement their solution.

Assessment methods

· Assignments 35% (2 assignments with a programming and a written part each)

· Quizzes 30% (3 quizzes, the lowest grade is dropped)

· Final 35%

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
The students learn about advanced algorithmic concepts using geometric problems. Geometric
problems are intuitive and easy to understand, yet admit sophisticated and complex solutions.
The students design and implement solutions to such problems. The students learn to evaluate
their solutions both theoretically and experimentally, and how to support their design choices by
writing a report for each project (in addition to the program).

Computer Science & Engineering Course Syllabi-45

Relationship of course to program outcomes: The contribution of CS133 to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

To become familiar with fundamental concepts in
computational geometry including convex hulls Voronoi
diagrams Delaunay triangulations and other.

3 0 0 0 0 0 0 0 0 0 3

To learn the techniques for building robust geometric
algorithms using efficient data structures and to become
proficient in implementing them.

3 0 1 0 0 0 0 0 0 0 3

To understand important applications of computational
geometry in computer graphics information systems data
mining robotics and other.

3 0 1 0 1 0 0 0 0 0 3

To learn how to model real life computational tasks using
paradigms from computational geometry.

3 0 1 0 1 0 0 0 0 0 3

Prepared by, and date of preparation:
Dimitrios Gunopulos – 06/15/06

Computer Science & Engineering Course Syllabi-46

COURSE DESCRIPTION

Dept., Number CS 141 Course Title Intermediate Data Structures and

Algorithms
Units 4 Course Coordinator Stefano Lonardi, Neal Young
Required/elective required URL (if any):

Current Catalog Description
Explores basic algorithm analysis using asymptotic notations, summation and recurrence
relations, and algorithms and data structures for discrete structures including trees, strings, and
graphs. Also covers general algorithm design techniques including “divide-and-conquer,” the
greedy method, and dynamic programming. Homework and programming assignments integrate
knowledge of data structures, algorithms, and programming.

Textbook
“Introduction to the Design and Analysis of Algorithms” by A.V. Levitin, Addison Wesley.

References/Materials
“Algorithm Design (Foundations, Analysis, and Internet Examples)” by Michael T. Goodrich
and Roberto Tamassia, Wiley.

“Introduction to Algorithms (2nd Edition)” by Thomas H. Cormen, Charles E. Leiserson, Ronald
L. Rivest, and Cliff Stein, MIT Press.

Course Goals/Objectives
1: Perform asymptotic analysis of the efficiency of algorithms
2: Understand fundamental algorithms and data structures for discrete objects
3: Devise correct and efficient algorithms based on standard algorithmic
design methods
4: Develop skills in systematic and rigorous computer programming by
integrating the theory of algorithms with practical problem solving

Prerequisites by Courses and Topics
CS 014 with a grade of "C-" or better; CS 111/MATH 111; MATH 009C or MATH 09HC;
proficiency in C++.

Major Topics Covered in the Course

Computer Science & Engineering Course Syllabi-47

RSA (modular arithmetic, greatest common divisor, Euclid’s algorithm, extended Euclid’s
algorithm, multiplicative inverse, fast exponentiation, RSA public keys, private keys, encryption,
decryption), divide and conquer (recurrence relations, geometric sums, naive upper and lower
bounds on sums, large integer multiplication, polynomial multiplication, closest pair of points in
a set), greedy algorithms (making change, Huffman coding, minimum spanning trees), dynamic
programming (computing binomial coefficients, making change, optimal binary search trees,
paragraph formatting), graphs (graph data structures, depth-first search, breadth-first search,
directed dfs, topological sort finding cut vertices, Dijsktra’s algorithm, Prim’s MST algorithm),
amortized data structures (union-find, growable array), lower bounds, NP-hardness

Laboratory schedule: number of sessions per week and duration of each session
Two hours of lab per week (one session)

Laboratory projects (specify number of weeks on each)
In each lab students are expected to complete a short self-contained project.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 100% Data Structures
Software Design Prog. Languages
Comp. Arch.

Oral and Written Communications:
Every student is required to submit 0 written reports (not including exams, tests, quizzes,
or commented programs) of typically 0 pages and to make 0 oral presentations of
typically 0 minute’s duration. Include only material that is graded for grammar, spelling,
style, and so forth, as well as for technical content, completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

NONE

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Computer Science & Engineering Course Syllabi-48

Analysis of algorithms
Correctness of algorithms
Graph algorithms

Problem Analysis

Please describe the analysis experiences common to all course sections.

Design of algorithms, with emphasis on efficiency and correctness
Design principles (greedy, divide and conquer, dynamic programming)
Implementation of algorithms in C++

Solution Design

Please describe the design experiences common to all course sections.
Short self-contained lab projects
Written pencil and paper homeworks on algorithm analysis and design
Individual C++ projects

Assessment methods
Quizzes 35%, Final 35%, Homeworks 10%, Projects 10%, Laboratory 10%.

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.

Computer Science & Engineering Course Syllabi-49

Relationship of course to program outcomes: The contribution of CS141 to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Perform asymptotic analysis of the efficiency of algorithms 3 0 0 0 0 0 0 0 0 0 3
Understand fundamental algorithms and data structures
fordiscrete objects

2 0 0 0 0 0 0 0 0 0 3

Devise correct and efficient algorithms based on standard
algorithmic design methods

3 0 2 0 1 0 0 0 0 0 3

Develop skills in systematic and rigorous computer
programming by integrating the theory of algorithms with
practical problem solving

3 1 0 0 0 0 0 0 0 0 3

Prepared by, and date of preparation:
Neal Young and Stefano Lonardi – 06/15/06

Computer Science & Engineering Course Syllabi-50

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 150

Course Title The Theory of Automata and Formal
Languages

Units 4 Course
Coordinator

Marek Chrobak

Required/elective required URL (if any):

Current Catalog Description:
Textbook: . Peter Linz, An Introduction to Formal Languages and Automata, Jones and
Bartlett Publishers

References/Materials
Lecture notes.

Course Goals/Objectives:

Prerequisites by Courses and Topics:

Major Topics Covered in the Course: Finite automata: introduction, applications,
regular languages, nondeterministic automata, equivalence and minimization of finite
automata, string searching, regular expressions, regular grammars, closure properties,
pumping lemma.

Context-free grammars: derivations, context-free languages, derivation trees,
applications, normal forms, membership algorithm, pushdown automata, pumping
lemma, closure properties, decision properties, parsing, LL(k) grammars

Introduction to Turing machines: Turing machine model of computation,
undecidability.

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; discussion, 1 hour.

Laboratory projects (specify number of weeks on each)
None.

Estimate Curriculum Category Content (percent of time)

Computer Science & Engineering Course Syllabi-51

Area Core Advanced Area Core Advanced
Algorithms 25% Data Structures
Software Design Prog. Languages
Comp. Arch.

Oral and Written Communications:
Every student is required to submit at least ___0__ written reports (not including exams,
tests, quizzes, or commented programs) of typically _____ pages and to make _____
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

N/A

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Mathematical theory of finite automata, context-free grammars 60%
Modeling real-life systems using finite-state machines 10%
Applications to string processing and parsing 20%
Computability 10%

Computer Science & Engineering Course Syllabi-52

Problem Analysis
Please describe the analysis experiences common to all course sections.

Students model real-life problems using finite-state machines. They analyze finite state
machines and context-free grammars, by determining the languages recognized by them.

Solution Design

Please describe the design experiences common to all course sections.

Students need to design finite-state machines that perform specified tasks. They also design
context-free grammars for specified languages.

Assessment methods: Quizzes 40%, Final 40%, Homeworks 20%.

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
N/A

Relationship of course to program outcomes: The contribution of CS111 to program
outcomes (a)-(k) or (1) – (7) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

To learn how to use correct mathematical terminology and
notation.

3 0 0 0 0 0 0 0 0 0 3

To learn the methods of formal mathematical reasoning and
proof techniques, including proofs by contradiction and by
induction.

3 0 0 0 0 0 0 0 0 0 3

To learn how to model real-life problems using discrete
mathematical structures: sets, sequences, combinations,
permutations, graphs, trees, relations, and algebraic
structures.

2 0 0 0 0 0 0 0 0 0 3

To master the concept of asymptotic notation and its
application to estimating running time of various algorithms.

3 0 0 0 0 0 0 0 0 0 3

To learn fundamentals of number theory and its applications
to cryptographic protocols.

2 0 0 0 0 0 0 0 0 0 3

To learn techniques for solving recurrence equations, and
their applications to counting and to analyzing the
complexity of divide-and-counter algorithms.

2 0 0 0 0 0 0 0 0 0 3

To learn the basic concepts in graph theory, including 1 0 0 0 0 0 0 0 0 0 3

Computer Science & Engineering Course Syllabi-53

connectivity, cycles, planarity, coloring.

Prepared by, and date of preparation: Marek Chrobak, June 15 2006

Computer Science & Engineering Course Syllabi-54

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 152

Course Title Compiler Design

Units 4 Course
Coordinator

Tom Payne

Required/elective required URL (if any):

Current Catalog Description: Covers the fundamentals of compiler design, including
lexical analysis, parsing, semantic analysis, compile-time memory organization, run-time
memory organization, code generation, and compiler portability issues. Laboratory work
involves exercises covering various aspects of compilers.

Textbook: Modern Compiler Implementation in Java (second edition) by Andrew Appel
and Jens Palsberg

References/Materials
The web site for the text, http://www.cs.princeton.edu/~appel/modern/java/. Also, when Tom
Payne teaches the class, the first seven chapters (75 pages) of his notes on Compiler Design,
which he distribute to the students in postscript, dvi, and html formats.

Course Goals/Objectives:

- Provide students with a basic understanding of the design and functionality
provided by compilers and interpreters, including theoretical foundations as far as
necessary

- Provide students with practical experience building a compiler for a (small)
imperative programming language, ideally generating code for an actual machine

- Using compilers, a well-explored field from the perspective of software
engineering, illustrate various useful design and implementation techniques,
focusing on object-oriented ones

Prerequisites by Courses and Topics: CS 061: Machine Organization and Assembly
Language Programming; CS 141: Intermediate Data Structures and Algorithms; CS 150:
Theory of Automata and Formal Languages

Major Topics Covered in the Course

Computer Science & Engineering Course Syllabi-55

29. Automatic generators for lexical analyzers (scanners): review of the set-of-states

construction for determinizing nondeterministic finite automata, use of ordered EBNF to
describe lexical categories, lookahead, left-context, case-study LEX, compression of state
table.

30. Automatic generators for LALR parsers: Converting context-free grammars
(BNF) to ``railroad diagrams'' to nondeterministic PDAs. Determinizing NPDAs: LR(0)
tables, LR(1) tables, generating LALR tables from LR(1) table, LALR table by
identifying states during construction of LR(1) table and propagation of lookaheads.

31. Syntax-directed translation.
32. The run-time environments including allocation and accessing of static, dynamic

and automatic objects.

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 3 hours

Laboratory projects (specify number of weeks on each)
One week of orientation to the term project, which is to construct a compiler for the MiniJava
language specified at the back of the textbook.
One week on the use of LEX (FLEX) and generating scanner for term project.
One week on the use of YACC (BISON) and generating parser for term project.
One week on the building of the syntax tree for the term project.
Two weeks on semantic analysis and checking for the term project.
Three weeks on code generation for the term project.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 5.00% Data Structures 5.00%
Software Design 24.00% Prog. Languages 33.00% 33.00%
Comp. Arch.

Oral and Written Communications:
Every student is required to submit at least __0___ written reports (not including exams,
tests, quizzes, or commented programs) of typically __0___ pages and to make ___0__
oral presentations of typically ___0__ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Computer Science & Engineering Course Syllabi-56

They are told the importance of doing their own work and fail the course if they violate that
rule

The are taught the golden rule with respect to error messages, and are shown easy ways to
make error messages more helpful. The only feedback on that is in the form of advice from
the TAs during labs.

The students are lectured on the importance of high-level programming languages to
programmer productivity and the importance of programmer productivity to all of
information technology.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

This course is where the material such as context free grammars and syntax trees is put to
practical use in building important tools. Specifically, the set-of-states construction learned
in the theory of computation class is used in the construction of scanner generators and
parser generators. (That construction is covered only in class. Then the students use such
generators in the development of the scanner and parser for their term project.)

Problem Analysis

Computer Science & Engineering Course Syllabi-57

Please describe the analysis experiences common to all course sections.
The analysis and design for the overall framework for the term project is presented in class
and follows the presentation in the text. The analysis and design for some of the
components (semantic analyzers and code generators for the individual expressions,
declarations, and statements) are presented in class, but the students must do the rest on their
own, with some in-lab help from the TAs.

Solution Design

Please describe the design experiences common to all course sections.

Part of the description of design experience is given in the box above. Beyond that, we tend
to emphasize object-oriented, test-driven design. We recommend that students treat each
type of node in the syntax tree as a class, with the various kinds of expressions being
subclasses of the Expression class, etc. Each of those classes must have a constructor, a
method for doing semantic analysis, and a method for generating code. So, each class
become a nicely constrained design problem.

Assessment methods: Final exam: 34%; Project: 33%; Quizzes: 33%.

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
The design and implementation of a compiler is a significant design experience and teaches a lot
about good coding and testing practices. But in CS152 the training wheels are on. Students are
presented with much of the top-level analysis and design, and they are coached a lot on how to
stay out of trouble. This is realistic preparation for the capstone design courses, in which the
training wheels are off.

Relationship of course to program outcomes: The contribution of CS152 to program
outcomes (a)-(k) or (1) – (3) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Provide students with a basic understanding of the design and
functionality provided by compilers and interpreters,
including theoretical foundations as far as necessary

1 0 0 0 0 0 0 0 0 0 3

Provide students with practical experience building a
compiler for a (small) imperative programming language,
ideally generating code for an actual machine

3 0 3 0 1 0 0 0 0 0 3

Using compilers, a well-explored field from the perspective
of software engineering, illustrate various useful design and
implementation techniques, focusing on object-oriented ones

3 0 2 0 1 0 0 0 0 0 3

Prepared by, and date of preparation:
Tom Payne 6/18/06

Computer Science & Engineering Course Syllabi-58

COURSE DESCRIPTION

Dept., Number Computer

Science and
Engineering,
CS 153

Course Title Design of Operating Systems

Units 4 Course Coordinator Vana Kalogeraki
Required/elective Required URL (if any): http://www.cs.ucr.edu/~vana/cs153

Current Catalog Description
Principles and practice of operating system design, including concurrency, memory management,
file systems, protection, security, command languages, scheduling, and system performance.
Laboratory work involves exercises covering various aspects of operating systems

Textbook
Operating System Concepts by Avi Silberschatz, Peter Baer Galvin, Greg Gagne, John Wiley &
Sons, Sixth Edition
Kernel Projects for Linux by Gary Nutt, Addison Wesley

References/Materials
http://www.cs.ucr.edu/~vana/cs153/resources.htm Additional resources for the course
http://www.cs.ucr.edu/~vana/cs153/assignments.htm Supporting material for the project
assignments

Course Goals/Objectives

- Study basic principles underlying the design of operating systems with a focus on
principles and mechanisms used throughout the design

- An understanding of CPU scheduling, storage management: memory management,
virtual memory and file systems

- Study of concurrency control and synchronization, classic algorithms for synchronization
and concurrency management

- Study Deadlocks Devices, device management and I/O systems
- Study dynamic binding
- An understanding of protection, access control and security
- Improve skills in concurrent programming and introduce kernel programming

Prerequisites by Courses and Topics
CS 061. Machine Organization and Assembly Language Programming
CS 141. Intermediate Data Structures and Algorithms
C++ programming proficiency

Major Topics Covered in the Course
Introduction to Operating Systems, Computer-System Structures and Operating-System
Structures. Process Management: Processes, Threads, CPU Scheduling, Process Synchronization
and Deadlocks. Storage Management: Memory Management, Virtual Memory, File-System
Interface, File-System Implementation.

Computer Science & Engineering Course Syllabi-59

Laboratory schedule: number of sessions per week and duration of each session
Lecture 3 hours
Laboratory 3 hours

Lab1: Practicing system functions
Lab2: Working on the 1st project assignment - shell programming
Lab3: Working on the 1st project assignment - shell programming
Lab4: Introduction to multi-threading
Lab5: Working on the 2nd project assignment – multithreading
Lab6: Working on the 2nd project assignment – multithreading
Lab7: Introduction to file systems
Lab8: Working on the 3rd project assignment – file systems
Lab9: Working on the 3rd project assignment – file systems
Lab10: Working on the 3rd project assignment – file systems

Laboratory projects (specify number of weeks on each)
1st project – Shell programming: 2 weeks
2nd project – Multithreading programs: 2 weeks
3rd project – File system: 3 weeks

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 10 10 Data Structures 10 5
Software Design 20 15 Prog. Languages 15 5
Comp. Arch. 5 5

Oral and Written Communications:
Every student is required to submit at least __1__ written reports (not including exams,
tests, quizzes, or commented programs) of typically _2-3__ pages and to make __1__
oral presentations of typically __10_ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Students will learn the importance of social and ethnical issues by participating in teams and
working with other team members.

Theoretical Content

Computer Science & Engineering Course Syllabi-60

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Introduction to Operating Systems Structures – 1 lecture
Introduction to Computer System Structures – 1 lecture
Process Management – 2 lectures
Threads – 2 lecture
CPU Scheduling - 2 lectures
Process Synchronization – 2 lectures
Deadlocks – 3 lectures
Memory Management – 3 lectures
Virtual Memory – 2 lectures
File systems – 2 lectures

Problem Analysis

Please describe the analysis experiences common to all course sections.

Students will learn to analyze the requirements and goals of the projects, identify the
important components and analyze the efficiency of their solutions.
The students will learn the importance of analysis through hands-on experience.

Solution Design

Please describe the design experiences common to all course sections.
A primary goal of the course is the design of solutions that meet the project requirements.
The students will design, implement and test various components of an operating system (a
UNIX Shell, a CPU Scheduler, a Multithreading program and a File System). The students
will apply software tools to build and evaluate their designs.
The students will learn the importance of solution design through hands-on experience. This
will help them understand the complexity of building real systems.

Assessment methods
Homeworks – 10%
Projects – 30%
2 Midterm Exams – 20%
Final Exam – 40%

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.

Computer Science & Engineering Course Syllabi-61

Students will learn how to design and implement various components of an operating system,
thus they will understand the overall engineering design process (identification of constraints,
description of design criteria and objectives, usage of tools, development of a prototype,
evaluation of the prototype based on the design criteria). Students will get hands-on experience in
proposing, designing and executing the project.
Students will also learn how to work in teams; each student will actively participate as a member
of a team, collaborate with the other team members, share the daily design activities and
management of the project and contribute to achieve the project goals. At the end of the project,
they will have to write a team report that describes their design, thus they will learn how to
communicate their ideas effectively.

Relationship of course to program outcomes: The contribution of CS153 to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Study basic principles underlying the design of operating
systems with a focus on principles and mechanisms used
throughout the design

1 0 1 0 1 0 0 0 0 0 3

An understanding of CPU scheduling storage management:
memory management virtual memory and file systems

1 0 0 0 0 0 0 0 0 0 3

Study of concurrency control and synchronization classical
algorithms for synchronization and concurrency management

1 0 1 0 0 0 0 0 0 0 3

Study Deadlocks Devices device management and I/O
systems

1 0 0 0 0 0 0 0 0 0 3

Study dynamic binding 0 0 0 0 0 0 0 0 0 0 3
An understanding of protection access control and security 1 0 0 0 0 1 0 1 0 0 3
Improve skills in concurrent programming and introduce
kernel programming

3 2 0 0 0 0 0 0 0 0 3

Prepared by, and date of preparation:
Vana Kalogeraki – 06/15/06

Computer Science & Engineering Course Syllabi-62

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 160

Course Title Concurrent Programming and
Parallel Systems

Units 4 Course
Coordinator

Tom Payne

Required/elective elective URL (if any):

Current Catalog Description: Study of concurrent and parallel systems. Topics include
modular structure and design, inter-process communication, synchronization, failures and
persistence, concurrency control, atomic transactions, recovery, language support,
distributed inter-process communication, and implementation mechanisms. Provides
preparation for the study of operating systems, databases, and computer networking.

Textbook: Concurrent Systems 2nd Ed, Jean Bacon

References/Materials
Selected handouts.

Course Goals/Objectives:

- Understand the requirements to support concurrent systems.
- Introduce modular system structure for concurrent systems and the relationship to

processes and threads.
- Understand the process abstraction, support for concurrency, and dynamic

execution models.
- Understand the difference between process abstraction versus dynamic execution

models that share and address space.
- Understand process interaction, hardware support for process interaction,

concurrency control without hardware support, and semaphores.
- Introduce classic systems problems and the POSIX threads package.
- Introduce IPC mechanisms for shared memory and non-shared memory systems.
- Understand mechanisms used to support crash resilience and introduce persistent

data.
- Understand composite operations that span distributed systems in the presence of

concurrency and crashes and the fundamentals of transactions.
- Introduce concurrency control for transactions.
- Provide laboratories that improve student programming competence and train

students to better design, implement and analyze concurrent systems.
- Provide assignments that give substantial hands on experience writing systems

that use concurrency and require concurrency control and fine grain concurrency
support.

Computer Science & Engineering Course Syllabi-63

Prerequisites by Courses and Topics: CS 061: Machine Organization and Assembly
Language Programming; CS 141: Intermediate Data Structures and Algorithms.

Major Topics Covered in the Course
Processes, threads, locks, semaphores, monitors, condition variables, interrupts/signals, commit
protocols, transactions, IPC, timeouts.

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 3 hours.

Computer Science & Engineering Course Syllabi-64

Laboratory projects (specify number of weeks on each)

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 20.00% Data Structures 10.00%
Software Design 30.00% Prog. Languages 25.00%
Comp. Arch. 15.00%

Oral and Written Communications:
Every student is required to submit at least _____ written reports (not including exams,
tests, quizzes, or commented programs) of typically _____ pages and to make _____
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Dekker's algorithm, Lamport's bakery algorithm, dining philosophers problem, two-phase
commit protocol.

Problem Analysis

Computer Science & Engineering Course Syllabi-65

Please describe the analysis experiences common to all course sections.
Different homework problems are given for each offering. There is the standard analysis
that is needed to understand a frame problems in concurrent programming. There is also the
problem of building an understanding of both the problem and the tool set to be used in
solving it.

Solution Design

Please describe the design experiences common to all course sections.

The solutions involve designing, implementing, and testing software systems of modest size.

Assessment methods: 40% homework, 30% quizzes, 30% final exam.

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
The assignments involve typical problems in small system design and in the use of standard
tools, e.g., the Pthreads system, which is the major standard in C-based multithreaded
programming.

Relationship of course to program outcomes: The contribution of CS160 to program
outcomes (a)-(k) or (1) – (12) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Understand the requirements to support concurrent systems. 1 0 1 0 0 0 0 0 0 0 3
Introduce modular system structure for concurrent systems
and the relationship to processes and threads.

1 0 0 0 0 1 0 0 0 0 3

Understand the process abstraction, support for concurrency,
and dynamic execution models.

2 0 0 0 0 0 0 0 0 0 3

Understand the difference between process abstraction versus
dynamic execution models that share and address space.

1 0 0 0 0 0 0 0 0 0 3

Understand process interaction, hardware support for process
interaction, concurrency control without hardware support,
and semaphores.

1 0 0 0 0 0 0 0 0 0 3

Introduce classic systems problems and the POSIX threads
package.

0 0 0 0 0 0 0 0 0 0 3

Introduce IPC mechanisms for shared memory and non-
shared memory systems.

1 0 0 0 0 0 0 0 0 0 3

Understand mechanisms used to support crash resilience and
introduce persistent data.

1 0 0 0 0 0 0 0 0 0 3

Understand composite operations that span distributed
systems in the presence of concurrency and crashes and the
fundamentals of transactions.

1 0 0 0 0 0 1 0 0 0 3

Introduce concurrency control for transactions. 1 0 0 0 0 0 0 0 0 0 3

Computer Science & Engineering Course Syllabi-66

Provide laboratories that improve student programming
competence and train students to better design, implement
and analyze concurrent systems.

3 2 3 0 2 0 0 0 0 0 3

Provide assignments that give substantial hands on
experience writing systems that use concurrency and require
concurrency control and fine grain concurrency support.

3 0 2 0 2 0 0 0 0 0 3

Prepared by, and date of preparation: Tom Payne 6/20/06

Computer Science & Engineering Course Syllabi-67

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 161

Course Title Design and Architecture of Computer
Systems

Units 4 Course
Coordinator

Dr. Laxmi N. Bhuyan

Required/elective Elective URL (if any): http://www.cs.ucr.edu/~bhuyan/cs161
(lectures)
http://www.cs.ucr.edu/~vladimir/cs161
(discussions)

Current Catalog Description: A study of the fundamentals of computer design. Topics
include the performance evaluation of microprocessors, instruction set design and
measurements of use, microprocessor implementation techniques including multi-cycle
and pipelined implementations, computer arithmetic, memory hierarchy, and input/output
(I/O) systems.

Textbook: Patterson and Hennessy, “Computer Organization and Design” Morgan
Kaufmann publisher

References/Materials
Lecture slides, available via the lectures web site;
selected discussion notes, available via the discussions web site.

Course Goals/Objectives:

1. Understand instructions as the language of the machine and the tradeoffs in
instruction set design

2. Introduction to the issues and factors that impact performance, both hardware and
software

3. Learn how to design the data-path and control unit as the heart of the CPU
4. Introduction to computer arithmetic: fast addition and multiplication
5. Introduction to memory hierarchy: simple caches and virtual memory
6. Learn how to design fast CPUs using pipelining
7. Introduction to advanced processors using instruction level parallelism

Prerequisites by Courses and Topics: CS 120B/EE 120B: Introduction to Embedded
Systems. Introduction to hardware and software design of digital computing systems
embedded in electronic devices (such as digital cameras or portable video games). Topics
include custom and programmable processor design, standard peripherals, memories,
interfacing, and hardware/software tradeoffs. Laboratory involves use of synthesis tools,
programmable logic, and microcontrollers and development of working embedded
systems; concurrent enrollment in CS 161L.

Major Topics Covered in the Course

Computer Science & Engineering Course Syllabi-68

Chapter 1: Introduction
Chapter 2: MIPS Instructions
Chapter 3: Computer Arithmetic
Chapter 4: Understanding Performance
Chapter 5: The Processor: Datapath and Control
Chapter 7: Memory Hierarchy
Chapter 8: I/O System

Laboratory schedule: number of sessions per week and duration of each session:

There is a separate laboratory class, CS 161 L, which is a co-requisite for the course. In
addition to the 3 hours a week of lectures, this course has 1 weekly discussion session,
which lasts for 50 minutes.

Weekly Discussion Schedule:

Week 1: Introduction
Week 2: Homework 1 (Assessing and Understanding Performance) introduced
Week 3: Solutions for Homework 1, Homework 2 (Instructions) introduced
Week 4: Homework 2 discussed
Week 5: Solutions for Homework 2, Homework 3 (Arithmetic) introduced
Week 6: Homework 3 discussed
Week 7: Solutions for Homework 3, Homework 4 (Datapath and Control) introduced
Week 8: Homework 4 discussed
Week 9: Solutions for Homework 4, Homework 5 (Memory Hierarchy) introduced
Week 10: Overview, Solutions for Homework 5

Laboratory projects (specify number of weeks on each)

There were no specific projects for the discussion sessions.

Instead, there were 5 homeworks, and discussions were structured to present material and
strategies useful for solving the homeworks. Solutions to selected problems were presented after
homeworks have been graded.

On average, for each of the 5 homework topics two weeks were allocated:

• Assessing and Understanding Performance (2 weeks)
• Instructions (2 weeks)
• Arithmetic (2 weeks)
• Datapath and Control (2 weeks)
• Memory Hierarchy (2 weeks)

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced

Computer Science & Engineering Course Syllabi-69

Algorithms Data Structures
Software Design Prog. Languages
Comp. Arch. 100

Oral and Written Communications:
Every student is required to submit at least __0___ written reports (not including exams,
tests, quizzes, or commented programs) of typically _0____ pages and to make __0___
oral presentations of typically _0____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Students work in groups during the discussion session. They get a chance to interact with
each other. They are constantly lectured about the benefit of graduate studies.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

The theoretical material consists of understanding of the instruction sets of a typical CPU,
basic building blocks of datapath, and memory units. Approximately 50% of the time is
spent in explaining these operations.

Problem Analysis

 Please describe the analysis experiences common to all course sections.

Analyzing the problem to get the understanding of the requirements was emphasized in the
lectures and in the discussions.

Solution Design

Please describe the design experiences common to all course sections.
This course emphasizes quantitative approach to computer architecture; hence, a significant
number of problems required quantitatively evaluating several alternative solutions to find
the best one for the problem at hand.

Computer Science & Engineering Course Syllabi-70

Assessment methods:

20% Homeworks (5 homeworks, 4% each)

20% Exam 1

25% Exam 2

35% Exam 3

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.

Relationship of course to program outcomes: The contribution of CS161 to program
outcomes (a)-(k) or (1) – (7) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Understand instructions as the language of the machine and
the tradeoffs in instruction set design

1 1 1 0 1 0 0 0 0 0 3

Introduction to the issues and factors that impact
performance, both hardware and software

2 2 2 0 1 0 0 0 0 0 3

Learn how to design the data-path and control unit as the
heart of the CPU

3 2 3 0 0 0 0 0 0 0 3

Introduction to computer arithmetic: fast addition and
multiplication

3 0 3 0 2 0 0 0 0 0 3

Introduction to memory hierarchy: simple caches and virtual
memory

2 2 3 0 2 0 0 0 0 0 3

Prepared by, and date of preparation:
L.N. Bhuyan, June 22, 2006

Computer Science & Engineering Course Syllabi-71

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 161L

Course Title Laboratory in Design and
Architecture of Computer Systems

Units 4 Course
Coordinator

Walid Najjar

Required/elective required URL (if any):

Current Catalog Description: Students design and simulate a complete computer
system, using hardware description language and simulator. Topics include instruction set
architecture design, assemblers, data-path and control unit design, arithmetic and logic
unit, memory and input/output (I/O) systems, and integration of all parts into a working
computer system.

Textbook: Computer Organization and Design: The HW / SW Interface, David A
Patterson, John L Hennessy

References/Materials
Course web site on moodle http://fish.cs.ucr.edu/moodle/

Course Goals/Objectives:

- Understanding of computer arithmetic by (1) Design and implementation of an
ALU and (2) Implementation of complex arithmetic algorithms in software.

- Understanding of operation of a CPU by (1) Design and implementation of a data-
path and (2) Design and implementation of the control unit both for the MIPS
architecture.

- Understanding of operation of a cache memory by designing and writing a cache-
simulator program in C/C++.

- Familiarity with the cycle-level simulation of a complex computer architectures

- Understanding of data-paths via hands on introduction to data-paths.

Prerequisites by Courses and Topics: CS 120B/EE 120B: Introduction to Embedded
Systems. Introduction to hardware and software design of digital computing systems
embedded in electronic devices (such as digital cameras or portable video games). Topics
include custom and programmable processor design, standard peripherals, memories,
interfacing, and hardware/software tradeoffs. Laboratory involves use of synthesis tools,
programmable logic, and microcontrollers and development of working embedded
systems; concurrent enrollment in CS 161.

Computer Science & Engineering Course Syllabi-72

Major Topics Covered in the Course
Review of VHDL, implementation of adders, implementation of 16/32-bit ALUs, floating-point
arithmetic, microprocessor data-paths, complete microprocessor implementation (with external
memory and control unit), cache simulator.

Laboratory schedule: number of sessions per week and duration of each session:
Lecture 3 hours
Laboratory 3 hours

Lab1: Review of VHDL, implementation of adders.
Lab2: Implementation of 16/32-bit ALU – part 1.
Lab3: Implementation of 16/32-bit ALU – part 2.
Lab4: Floating-point arithmetic and ALU – part 1.
Lab5: Floating-point arithmetic and ALU – part 2.
Lab6: A microprocessor data-path.
Lab7: Completed microprocessor implementation (external memory and control unit).
Lab8: Completed microprocessor implementation – part 2.
Lab9: Cache simulator – part 1.
Lab10: Cache simulator – part 2.

Laboratory projects (specify number of weeks on each)
1st project – Integer ALU: 2 weeks.
2nd project –Floating-point ALU: 2 weeks.
3rd project – Microprocessor implementation: 3 weeks.
4th project – Cache simulator: 2 weeks.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 10 10 Data Structures 5 5
Software Design 15 15 Prog. Languages 10 10
Comp. Arch. 60 60

Oral and Written Communications:
For each project each team is required to submit at least __1__ written reports (not
including exams, tests, quizzes, or commented programs) of typically _2-3__ pages and
to make __1__ oral presentations of typically __10_ minute’s duration.

Social and Ethical Issues

Students will learn the importance of social and ethnical issues by participating in teams and
working with other team members.
Topic of social, ethical and legal issues in architecture design is addressed in the lecture.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Computer Science & Engineering Course Syllabi-73

Review of number representation, integer and floating-point – 1 lecture.
Integer addition, carry-ripple, carry-save and carry select – 2 lecture.
Integer multiplication (bit-recoding, array multipliers) – 2 lecture.
Fast integer division – 2 lecture.
Basic control unit design – 1 lecture.
Cache structure and design – 2 lectures.

Problem Analysis
Please describe the analysis experiences common to all course sections.

Students will learn to analyze the requirements and goals of the projects, identify the
important components and analyze the efficiency of their solutions.
The students will learn the importance of analysis through hands-on experience.

Solution Design

Please describe the design experiences common to all course sections.
A primary goal of the course is to teach hands-on the design and implementation of a basic
microprocessor starting with individual components and building a complete system.
An important aspect is the design relationship between the instruction set architecture and
the system implementation and hence between software and hardware.
The students will learn the importance of solution design through hands-on experience. This
will help them understand the complexity of building real systems.

Assessment methods
Projects – 80%
Quizes (3) – 20%

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
Students will learn how to design and implement various components of a microprocessor
system, thus they will understand the overall engineering design process (identification of
constraints, description of design criteria and objectives, usage of tools, development of a
prototype, evaluation of the prototype based on the design criteria). Students will get hands-on
experience in proposing, designing and executing the project.
Students will also learn how to work in teams; each student will actively participate as a member
of a team, collaborate with the other team members, share the daily design activities and
management of the project and contribute to achieve the project goals. At the end of the project,
they will have to write a team report that describes their design, thus they will learn how to
communicate their ideas effectively.

Computer Science & Engineering Course Syllabi-74

Relationship of course to program outcomes: The contribution of CS161L to program
outcomes (a)-(k) or (1) – (5) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Understanding of computer arithmetic by (1) Design and
implementation of an ALU and (2) Implementation of
complex arithmetic algorithms in software.

3 0 3 0 1 0 0 0 0 0 3

Understanding of operation of a CPU by (1) Design and
implementation of a data-path and (2) Design and
implementation of a the control unit both for the MIPS
architecture

3 0 3 0 1 0 0 0 0 0 3

Understanding of operation of a cache memory by designing
and writing a cache-simulator program in C/C++

3 0 2 0 1 0 0 0 0 0 3

Familiarity with the cycle-level simulation of a complex
computer architectures

1 0 0 0 0 0 0 0 0 0 3

Understanding of data-paths via a hands on introduction to
data-paths

3 0 0 0 0 0 0 0 0 0 3

Prepared by, and date of preparation:
Walid Najjar, 19 June 2006

Computer Science & Engineering Course Syllabi-75

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 162

Course Title Computer Architecture

Units 4 Course
Coordinator

Required/elective elective URL (if any):

Current Catalog Description: The study of advanced processor design. Topics include
CPU pipelining, data and control hazards, instruction-level parallelism, branch
prediction, and dynamic scheduling of instructions. Also covers Very Long Instruction
Word (VLIW) processing, design of network and embedded processors, basic
multiprocessor design, shared memory and message passing, and network topologies.

Textbook:
1. Patterson and Hennessy, “Computer Organization and Design: The Hardware/Software
Interface” Morgan Kaufmann
2. Hennessy and Patterson, “Computer Architecture: A Quantitative Approach” Morgan
Kaufmann

References/Materials
Supporting material for the course are provided at
http://www.cs.ucr.edu/~bhuyan/cs162/index.html and
http://www.cs.ucr.edu/~junyang/teach/S06_162/162.html

Course Goals/Objectives:

1. Learn various techniques, such as instruction level parallelism, VLIW,
multithreading, branch prediction and speculation, for design of advanced
processors. Evaluate the performance impact of some of these techniques through
simulations.

2. Learn architectural details of network processors. Develop network protocol
applications and evaluate their performance on a network processor through
simulation and experiment.

3. Learn basics of multiprocessor operation including shared memory and message
passing communications, cache coherence protocols, and user level
communication techniques.

Prerequisites by Courses and Topics: CS 161 and CS 161L: Design and Architecture
of Computer Systems. A study of the fundamentals of computer design. Topics include
the performance evaluation of microprocessors, instruction set design and measurements
of use, microprocessor implementation techniques including multi-cycle and pipelined
implementations, computer arithmetic, memory hierarchy, and input/output (I/O)
systems.

Major Topics Covered in the Course:

Computer Science & Engineering Course Syllabi-76

• Advanced processor design: CPU pipelining, Datapath and Control Design, Data and
Control Hazards: The topics will be covered from Chapter 6 of the text 1

• Instruction level parallelism, Dynamic scheduling of instructions, Branch Prediction and

Speculation – From text book (2) and papers

• VLIW, Multithreading, and Network processor architectures – From papers

• Basic multiprocessor design: Shared memory and message passing; Network topologies.
The topic will be covered from Chapter 9 of the text 1.

Laboratory schedule: number of sessions per week and duration of each session: The
following laboratory assignments were given in spring 2004.

33. SimpleScalar Simulation Tool Set
34. Performance Evaluation with Benchmarks (I)
35. Performance Evaluation with Benchmarks (II)
36. Intel IXP2400 Overview and Hands-on Practice
37. Microcode Programming on Intel IXP2400
38. Packet Receiving, Processing and Transmitting
39. Packet Processing in a Single Thread
40. Unordered Thread Execution
41. Context Pipeline Stages
42. Rings and Queues

Homework:

� Homework 1: 6.17, 6.18 on pp. 456 of the textbook. Due: 4/27 before class.
� Homework 2: multicycle staged pipeline. Due: 5/9 before class.
� Homework 3: Tomasulo's algorithm. Assigned: 5/17/2006. Due: 5/25/2006, in class.
� Homework 4: Virtual memory. Assigned: 5/26. Due 6/1 in class.
� Homework 5: read the example on pp. 601 of the textbook. Recalculate the result using
a memory backplane bus transfer rate of 500MB/sec, i.e., the original rate has been cut by
half.

Computer Science & Engineering Course Syllabi-77

Laboratory projects (specify number of weeks on each)
Students are divided to groups of two students and complete one of the following projects
in 2/3 weeks time.
1 TCP splicing: Offer content based switching by splicing two TCP connections
2 Device driver for IXP2400: Make IXP2400 talk to host over PCI-to-PCI bridge
3 Instruction decoder: write an instruction decoder for IXP2400
4 SSL offloading: offload SSL processing to IXP
5 Transcoding: Speed up media transcoding with IXP2400
6 IPv4 packet forwarding and classification
7 Performance evaluation of cryptographic primitives on IXP2400

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 5 5 Data Structures
Software Design 20 10 Prog. Languages
Comp. Arch. 40 20

Oral and Written Communications:
Every student is required to submit at least _one____ written reports (not including
exams, tests, quizzes, or commented programs) of typically __10___ pages and to make
__1___ oral presentations of typically __15___ minute’s duration. Include only material
that is graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Students will learn the importance of social and ethnical issues by participating in teams and
working with other team members.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

The course covers both theoretical and practical aspects of computer design. Theoretical
aspects include learning various concepts in computer architecture and takes about 30% of
the total time.

Problem Analysis

Computer Science & Engineering Course Syllabi-78

Please describe the analysis experiences common to all course sections.
When the course was started, emphasis was given to laboratory experiments consisting of
network processors (NP). Since NP programming is done at an assembly language level,
many students found it to be difficult to learn another language at their final year. Also,
there was not enough time to learn all the techniques of NP programming during one
quarter. Hence the NP laboratory project was removed when the course was offered in
Spring 2006.

Solution Design

Please describe the design experiences common to all course sections.

Computer architecture is a subject full of hardware design. The students learn to design the
datapath and control unit of various CPUs.

Assessment methods:

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
The course teaches students how to become a computer engineer concentrating on the electronic
design of its components. They also learn how to work in teams and write reports.

Relationship of course to program outcomes: The contribution of CS162 to program
outcomes (a)-(k) or (1) – (3) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Learn various techniques, such as instruction level
parallelism, VLIW, multithreading, branch prediction and
speculation, for design of advanced processors. Evaluate the
performance impact of some of these techniques through
simulations

3 2 0 0 0 0 0 0 0 0 3

Learn architectural details of network processors. Develop
network protocol applications and evaluate their performance
on a network processor through simulation and experiment

2 2 0 0 0 0 0 0 0 0 3

Learn basics of multiprocessor operation including shared
memory and message passing communications, cache
coherence protocols, and user level communication
techniques

1 0 0 0 0 0 0 0 0 0 3

Prepared by, and date of preparation: Tom Payne, June 15 2006

Computer Science & Engineering Course Syllabi-79

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 164

Course Title Computer Networks

Units 4 Course
Coordinator

Michalis Faloutsos

Required/elective elective URL (if any): http://www.cs.ucr.edu/cs164/

Current Catalog Description: Covers the fundamentals of computer networks. Topics
include layered network architecture, communication protocols, local area networks,
UNIX network programming, verification, network security, and performance studies.

Textbook: L. L. Peterson and B. S. Davie, Computer Networks, A Systems Approach,
Third Edition, Morgan Kaufmann, 2003.

References/Materials

• The Pocket Guide to TCP/IP Sockets by Michael J. Donahoo and Kenneth L. Calvert
• Unix Network Programming: Volume I by W.Richard Stevens Prentice Hall, 1998.
• Computer Networking: A Top-Down Approach Featuring the Internet by James Kurose

and Keith Ross. Addison Wesley
• Data Networks by D.Bersekas and R.Gallager. Prentice Hall.

Course Goals/Objectives:

1. Understanding of layering and the network stack concept
2. Understanding of techniques for reliable transmission
3. Understanding of IP routing
4. Understanding of common protocols on all layers of the network stack
5. Experience with the BSD socket API
6. Ability to track the actions associated with transmitting an application-level

datagram down through the network stack, through the network, and to a remote
application.

Prerequisites by Courses and Topics: CS 141: Intermediate Data Structures and
Algorithms. Explores basic algorithm analysis using asymptotic notations, summation
and recurrence relations, and algorithms and data structures for discrete structures
including trees, strings, and graphs. Also covers general algorithm design techniques
including “divide-and-conquer,” the greedy method, and dynamic programming.
Homework and programming assignments integrate knowledge of data structures,
algorithms, and programming; CS 153: Design of Operating Systems. Principles and
practice of operating system design, including concurrency, memory management, file
systems, protection, security, command languages, scheduling, and system performance.
Laboratory work involves exercises covering various aspects of operating systems.

Major Topics Covered in the Course

Computer Science & Engineering Course Syllabi-80

• Week1: Introduction to Computer Networks
• Week2: Data Link Layer
• Week3: Routing
• Week4: Routing (cont.)
• Week5: Transport
• Week6: Transport (cont.)
• Week7: Transport (cont.)
• Week8: Network Security, Application Layer, Miscellaneous Issues
• Week9: Network Security, Application Layer, Miscellaneous Issues
• Week10: Network Security, Application Layer, Miscellaneous Issues

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 3 hours.

Laboratory projects (specify number of weeks on each)

• Lab 1: (1 week) Use traceroute to study Internet packet forwarding to different continents.
Modify the supplied echo server in application to become a remote arithmetic checker.

• Lab 2: (1 week) Write programs to play the roles of the client, forwarder and server in a
simple Peer-to-Peer (P2P) network application..

• Lab 3: (1 week) Run a simple network simulation example using the “ns” network
simulation package.

• Lab 4: (1 week) Develop a more complicated network simulation with “ns” that includes
trace-driven input.

• Lab 5: (1 week) Experiment with “distance vector” and “link state” routing protocols in
the presence of link failures, using “ns”.

• Lab 6: (1 week) Use the “ethereal” packet-level monitoring tool (aka “sniffer”) to study
network traffic. For extra credit, reassemble the payloads of related packets to view web
pages being downloaded over the monitored link.

• Lab 7: (1 week). Study the dynamic behavior of the TCP congestion avoidance algorithm
using “ns”.

• Lab 8: (1 week) Compare the dynamic behavior of three different versions of TCP on a
multihop connection using “ns”.

• Project: (3 weeks). Write a 4-6 page research paper as part of a two-person team.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 10 10 Data Structures
Software Design 5 Prog. Languages 5
Comp. Arch. 10 10

Oral and Written Communications:
Every student is required to submit at least ___1__ written reports (not including exams,
tests, quizzes, or commented programs) of typically __6___ pages and to make _____
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Computer Science & Engineering Course Syllabi-81

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Introduction to network security including information privacy, tampering by intermediate
nodes in a multihop path; denial of service attacks, etc. It is covered in short-answer test
questions. (1 lecture)

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Complexity of shortest-path algorithms in the context of network routing (1 lecture);
spanning trees for local networks and multicast distribution (1 lecture).

Problem Analysis

Please describe the analysis experiences common to all course sections.

Students will learn to analyze the requirements and goals of the projects, identify the
important components and analyze the efficiency of their solutions. More specifically,
students will learn the importance of analysis through hands-on experience. Calculation of
the bandwidth-delay product for a communication link or network path, and its significance
in determining the capacity of acknowledgement-based flow control schemes (1 lecture).

Solution Design

Please describe the design experiences common to all course sections.

Socket programming to provide asynchronous bi-direction exchange of information between
processes running on different computers linked by a network. Understanding protocol
descriptions expressed as event-driven finite state machines, and implementing a non-trivial
protocol on a real network (via sockets) or simulated network.

Assessment methods:

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.

Computer Science & Engineering Course Syllabi-82

Understanding the importance of commonly used network standards for low-level physical
connections (for example, IEEE 802 standards for Local and Metropolitan Area Networks) and
higher level protocols for managing the network or application layer functions (for example,
Internet Engineering Task Force RFCs). Understanding why certain technologies become
dominant (for example, Ethernet and TCP/IP) while others fail (for example, Token Ring and
ATM).

Relationship of course to program outcomes: The contribution of CS164 to program
outcomes (a)-(k) or (1) – (6) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Understanding of layering and the network stack concept 1 2 0 0 0 0 0 0 0 0 3
Understanding of techniques for reliable transmission 1 2 0 0 0 0 0 0 0 0 3
Understanding of IP routing 1 0 0 0 0 0 0 0 0 0 3
Understanding of common protocols on all layers of the
network stack

1 0 0 0 0 0 0 0 0 0 3

Experience with the BSD socket API 2 0 0 0 0 0 0 0 0 0 3
Ability to track the actions associated with transmitting an
application-level datagram down through the network stack,
through the network, and to a remote application.

2 2 0 0 0 0 0 0 0 0 3

Prepared by, and date of preparation:

Mart Molle, June 19, 2006

Computer Science & Engineering Course Syllabi-83

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 165

Course Title Computer Security

Units 4 Course
Coordinator

C.V. Ravishankar

Required/elective elective URL (if any):

Current Catalog Description: Examines the ways in which information systems are
vulnerable to security breaches. Topics include attacks; security labels, lattices, and
policies; safeguards and countermeasures; intrusion detection; authorization and
encryption techniques; networks; digital signatures, certificates, and passwords; privacy
issues, firewalls, and spoofing; Trojan horses and computer viruses; CERT Coordination
Center; and electronic commerce.

Textbook:

References/Materials
Textbook: Security in Computing by C.P.Pfleeger and S.L.Pfleeger, Prentice Hall, 3rd Edition.

Course Goals/Objectives:

43. Understand basic issues to be addressed secure computer systems design,
including risk, privacy, integrity, and availability.

44. Understand the basic security and threat models.
45. Understand the principles of cryptography.
46. Understand various protocols for authentication, data security and privacy, key

generation and management, and application-specific security.
47. Understand program security, including malicious code and countermeasures.
48. Understand the principles of secure systems design.
49. Understand the principles of network and distributed systems security.
50. Develop an appreciation of issues systems administration.
51. Write programs to reinforce concepts learned.

Prerequisites by Courses and Topics: CS 141: Intermediate Data Structures and
Algorithms. Explores basic algorithm analysis using asymptotic notations, summation
and recurrence relations, and algorithms and data structures for discrete structures
including trees, strings, and graphs. Also covers general algorithm design techniques
including “divide-and-conquer,” the greedy method, and dynamic programming.
Homework and programming assignments integrate knowledge of data structures,
algorithms, and programming; CS 153: Design of Operating Systems. Principles and
practice of operating system design, including concurrency, memory management, file
systems, protection, security, command languages, scheduling, and system performance.
Laboratory work involves exercises covering various aspects of operating systems.

Computer Science & Engineering Course Syllabi-84

Major Topics Covered in the Course
Introdcution to Computer Security, Elementary Cryptography (Both Secret Key and Public Key
Systems), Program security, Viruses and Worms, Protection in General Purpose Operating
Systems, Network Security.

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 3 hours.

Computer Science & Engineering Course Syllabi-85

Laboratory projects (specify number of weeks on each)
- Implementation of the DES Encryption and Decryption Algorithms. (3 weeks)
- Implementation of a Public Key Exchange system based on a Diffie Hellman exchange

(3 weeks)
- Implementation of a Secure Socket Layer on a UDP connection. (4 weeks)

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 25 25 Data Structures 10 10
Software Design 15 Prog. Languages 5
Comp. Arch. 5 5

Oral and Written Communications:
Every student is required to submit at least ___1__ written reports (not including exams,
tests, quizzes, or commented programs) of typically _3____ pages and to make _1____
oral presentations of typically __15___ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

The initial projects are individual projects. The final project is a team project. The students
are advised of the ethical issues in terms of independently working on the initial projects and
working together and contributing to the team effort.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Introduction to Computer Security 3 lectures.
Elementatry Cryptography – Secret Keys, DES and AES – 3 lectures
Public Key Infrastructure – 2 lectures
Viruses and Worms – 4 lectures
Protection in general purpose operating systems -- 4 lectures
Network security (Denial of Service attacks, Firewalls, Intrusion Detection Systems, Secure
E-mail) – 4 lectures

Problem Analysis

Computer Science & Engineering Course Syllabi-86

Please describe the analysis experiences common to all course sections.
Students will learn to analyze the requirements and goals of the projects, identify the
important components and analyze the efficiency of their solutions.
The students will learn the importance of analysis through hands-on experience.

Solution Design

Please describe the design experiences common to all course sections.

The students learn to design solutions to various types of security threats. In particular, they
learn to implement cryptographic modules and the design of a secure message exchange
mechanism. The students will apply software tools to build and evaluate their designs.
The students will learn the importance of solution design through hands-on experience. This
will help them understand the complexity of building real systems.

Assessment methods:

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
Students will learn how to design and implement various components of computer security.
Since security solutions are threat specific, they will understand the overall engineering design
process (identification of constraints, description of design criteria and objectives, usage of tools,
development of a prototype, evaluation of the prototype based on the design criteria). Students
will get hands-on experience in proposing, designing and executing the project.
Students will also learn how to work in teams; each student will actively participate as a member
of a team, collaborate with the other team members, share the daily design activities and
management of the project and contribute to achieve the project goals. At the end of the project,
they will have to write a team report that describes their design, thus they will learn how to
communicate their ideas effectively.

Relationship of course to program outcomes: The contribution of CS165 to program
outcomes (a)-(k) or (1) – (9) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Understand basic issues to be addressed secure computer
systems design, including risk, privacy, integrity, and
availability.

2 2 0 0 0 2 0 0 0 0 3

Understand the basic security and threat models. 3 0 0 0 0 1 0 0 0 1 3
Understand the principles of cryptography. 2 0 0 0 0 1 0 0 0 0 3
Understand various protocols for authentication, data security
and privacy, key generation and management, and
application-specific security.

2 0 0 0 0 1 0 0 0 1 3

Understand program security, including malicious code and
countermeasures.

1 0 0 0 0 2 0 0 0 0 3

Understand the principles of secure systems design. 1 0 1 0 0 1 0 0 0 0 3

Computer Science & Engineering Course Syllabi-87

Understand the principles of network and distributed systems
security.

1 0 0 0 0 1 0 0 0 0 3

Develop an appreciation of issues systems administration. 1 0 0 0 0 1 0 0 0 0 3
Write programs to reinforce concepts learned. 3 1 2 0 0 0 0 0 0 0 3

Prepared by, and date of preparation: Srikanth Krishnamurthy, June 15, 2006

Computer Science & Engineering Course Syllabi-88

COURSE DESCRIPTION

Dept., Number Computer

Science and
Engineering,
CS 166

Course Title Database Management Systems

Units 4 Course Coordinator Vassilis Tsotras
Required/elective Elective URL (if any): http://www.cs.ucr.edu/cs166/

Current Catalog Description:
Topics include architecture of database management systems; relational, network, and
hierarchical models; distributed database concepts; query languages; implementation issues; and
privacy and security of the database.
 Textbook
Database Management Systems by Raghu Ramakrishnan and Johannes Gehrke, McGraw-Hill,
Third Edition

References/Materials
http://www.cs.ucr.edu/cs166/main_manual.htm - Short Postgres Database tutorial
http://developer.postgresql.org/docs/postgres/ - Extensive Postgres Database development
documentation
http://www.cs.ucr.edu/cs166/project.htm - Supporting materials for the course project

Course Goals/Objectives

- Understanding the basic architecture of relational Database management systems .
- Model real-life applications using the elements of Entity Relationship model: entities,

attributes, relations, participation constraints, aggregations, hierarchy and how to convert
this ER model in efficient Database schema.

- Learn the theoretical models of relational query languages described in terms of
Relational algebra and relational calculus

- Understand how to manipulate data and write complex queries in the relational database
model using SQL.

- Capture the fundamentals of physical database organization.
- Learn different techniques for data indexing and data organization, and their applications

to improve the database retrieval performance.
- Learn the basic algorithms for efficient data access and how to estimate their cost in

terms of I/O operations.
- Understand Query Optimization.

Prerequisites by Courses and Topics
CS 141. Intermediate Data Structures and Algorithms

Major Topics Covered in the Course

Computer Science & Engineering Course Syllabi-89

Steps in the database design process: Conceptual design and Logical database design, Entity
relationship models. Fundamentals of the query languages. Relational algebra operators:
selection, projection, Cartesian product, solving relational algebra problems. Relational calculus
and relational-complete languages. Data manipulation using SQL. Writing database queries in
SQL: single block and correlated queries.
Fundamentals of the database architecture and organization. Indexing: B+ tree, Hash based
indexing. Algorithms for data processing: external sort algorithm, Join algorithms. Relational
Query Optimization.

Laboratory schedule: number of sessions per week and duration of each session
Lecture, 3 hours; Lab section, 3 hours.

Lab 1 - Introduction to Database Management Systems
Lab 2 - Introduction to Database Design – ER modeling
Lab 3 - Relational model
Lab 4 - Relational algebra
Lab 5 - Structured Query Language - SQL
Lab 6 - Structured Query Language - SQL (part 2)
Lab 7 - Working with JDBC
Lab 8 - Working on the course project
Lab 9 - Working on the course project
Lab 10 - Working on the course project

Laboratory projects (specify number of weeks on each)
Implementation of information system using relational database for storage
Phase 1 – ER design: 3 weeks
Phase 2 – Relational schema design: 1 week
Phase 3 – Implementation (SQL queries, client application development): 6 weeks

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 10 5 Data Structures 15 5
Software Design 20 15 Prog. Languages 10 10
Comp. Arch. 5 5

Oral and Written Communications:
Every student is required to submit at least __2___ written reports (not including exams,
tests, quizzes, or commented programs) of typically __4-5__ pages and to make _ 1 __
oral presentation of typically _ 20 __ minutes duration.
Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Computer Science & Engineering Course Syllabi-90

N/A

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Introduction & Relational Model – 3 lectures
Relational Algebra and Relational Calculus – 2 lectures
SQL - 3 lectures
Storage and Indexing – 1 lecture
Storing Data: Disks and Files – 1 lecture
Tree-Structured Indexing (B+ Tree) – 1 lecture
Hash-Based Indexing – 2 lectures
Query Evaluation – 2 lectures
External Sorting – 1 lecture
Evaluation of Relational Operators – 2 lectures
Relational Query Optimizer – 1 lecture

Problem Analysis

Please describe the analysis experiences common to all course sections.

During the course the students have to learn how to analyze the project requirements. The
outcome of this process is project specification based on the requirements. Instructions are
given in the first two lectures covering the Design steps and ER model and also in the first
lab section.

Solution Design

Please describe the design experiences common to all course sections.
Based on the project specification, the students have to show their designing skills creating
Entity relationship diagram for their project. Using this diagram they have to create
Relational database design which later they have to implement. During the third phase of the
project the students have to design and implement client side application for their projects.

Assessment methods
Midterm Exam: ~ 25%
Final Exam: ~ 35%
Homework Assignments: ~ 10%
Project: ~ 25%
Lab attendance: ~ 5%

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.

Computer Science & Engineering Course Syllabi-91

Students learn how to design a real life database application from scratch. Every year the project
covers a different example (recent example projects are: design a hotel reservation system, a car
rental application, etc.) They then use a relational database management system to implement the
application, including simple front-ends. They work in groups so they have to learn how to
cooperate, manage their time and complete the project. They also have to write a report and
present their project which prepares them for realistic work environments.

Relationship of course to program outcomes: The contribution of CS166 to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Understand advantages of using a Database Management
System as a tool to store maintain and query large amounts of
data.

1 0 0 0 0 0 0 0 0 0 3

Understand the principles of Database Design through the
Entity-Relationship approach.

2 0 0 0 0 0 0 0 0 0 3

Understand the foundations of the Relational Model. 3 0 0 0 0 0 0 0 0 0 3
Understand the meaning of relationally complete systems
with emphasis on Relational Algebra as a basic query
language.

3 0 0 0 0 0 0 0 0 0 3

Learn the basics of SQL the standard commercial relational
language.

2 0 0 0 0 0 0 0 0 0 3

Learn the basics of SQL the standard commercial
relational language.

1 0 0 0 0 0 0 0 0 0 3

Learn the principles of access methods with emphasis on
B+-treesand external hashing.

2 0 0 0 0 0 0 0 0 0 3

Understand Query Optimization. 3 0 0 0 0 0 0 0 0 0 3
Understand the basics of transaction processing. 2 0 0 0 0 0 0 0 0 0 3
Develop a complex application from design to query/form
implementation using a relational database management
system.

3 0 3 0 2 0 0 0 0 0 3

Prepared by, and date of preparation:
Vassilis Tsotras – 06/15/06

Computer Science & Engineering Course Syllabi-92

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 168

Course Title Introduction to Very Large Scale
Integration (VLSI) Design

Units 5 Course
Coordinator

Harry Hsieh / Frank Vahid / Roman
Lysecky

Required/elective elective URL (if any): http://www.cs.ucr.edu/cs168/cs168-
04win

Current Catalog Description: Basic electrical properties of metal-oxide-semi
conductor (MOS) circuits. MOS circuit design processes. Basic circuit concepts.
Subsystem design and layout. Aspects of system design. Memory, registers, and aspects
of systems timing.

Textbook:

References/Materials
Modern VLSI Design: System-on-Chip Design by Wayne Wolf, Third Edition, Prentice Hall
PTR

Course Goals/Objectives:

• Understand basic operation of CMOS transistors
• Be able to build simple logic gates from transistors
• Be able to layout simple logic gates
• Be able to create layouts for basic combinational and sequential components
• Understand modern chip design and fabrication issues, challenges and trends
• Understand how circuits are mapped to FPGAs

Prerequisites by Courses and Topics: CS 120A/EE 120A: Logic Design. The design
of digital systems. Topics include Boolean algebra; combinational and sequential logic
design; design and use of arithmetic-logic units, carry-look-ahead adders, multiplexors,
decoders, comparators, multipliers, flip-flops, registers, and simple memories; state-
machine design; and basic register-transfer level design; or consent of instructor.

Major Topics Covered in the Course

Computer Science & Engineering Course Syllabi-93

Lecture Topic includes: Introduction to VLSI Design; Fabrication, Transistor Structures, Basic
Transistor Behavior; Transistor Characteristics; Wires, Vias, and Par1asitics; Design Rules and
Stick Diagrams; Combinational Logic Functions and CMOS Logic Gates; Electrical Properties
of Combinational Gates; Wire Delay, Buffer Insertion; Pseudo nMOS Gates, DCVS Logic,
Domino Gates; Layout, Channel Routing, Simulation; Combinational Network Delay, Logic
Optimization; Transistor Sizing; Interconnect Design, Crosstalk, Power Optimization; Switch
Networks, Combinational Testing; Memory Elements, Basics of Sequential Machines; Clocking
Disciplines; Sequential Machine Design; State Assignment, Power Optimization, Design
Validation, Sequential Testing; FPGA Fabric Architecture; SRAM-based FPGA Fabrics;
Shifters, Adders, ALU; Multipliers; Memories, Datapaths, PLAs.

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 6 hours.

Laboratory projects (specify number of weeks on each)

52. Introduction to Cadence Schematic Design/ Simulation (0.5 weeks)
53. Introduction to Cadence Layout Design (0.5 weeks)
54. NAND Gate Transistor/Layout Design (1 week)
55. 4-bit Adder Design (1.5 weeks)
56. 1-bit SRAM Memory Cell Design (1 week)
57. 4-bit SRAM Shift Register (1.5 weeks)
58. FPGA CLB Design (3 weeks)

Computer Science & Engineering Course Syllabi-94

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 20% Data Structures 10%
Software Design 5% 15% Prog. Languages 5% 10%
Comp. Arch. 10% 25%

Oral and Written Communications:
Every student is required to submit at least __7___ written reports (not including exams,
tests, quizzes, or commented programs) of typically ___3__ pages and to make __4___
oral presentations of typically __5___ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

First week discusses (in lecture) subject of applying VLSI design/systems for improved
quality of life and safety, including discussion of systems like medical devices, automobiles,
robots, etc. Student presentations include application of embedded system to socially related
projects (e.g. earthquake alarm, alternative energy sources, medical robots).

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

- Principle of Digital systems and VLSI (1 lecture hour)
- Transistor and Layout Structures (4 lecture hours)
- Designing with Logic Gates (5 lecture hours)
- Building Combinational Logic Networks (5 lecture hours)
- Principle of Sequential Machines (4 lecture hours)
- Subsystem Design (3 lecture hours)
- FPGA Archiecture (2 lecture hours)

Problem Analysis

Please describe the analysis experiences common to all course sections.

Analysis of area/performance/power/design-time/reliability of advance VLSI sdesign which
may consists of both different structure, different design method and algorithms. Extensive
trade-off analysis throughout.

Solution Design

Computer Science & Engineering Course Syllabi-95

Please describe the design experiences common to all course sections.

Lecture: Design of advance VLSI systems building up from Transistor layout, to logic gates,
to combinational logic networks, to sequential machines, to the entire sussystem.
Lab: Design of advance VLSI systems building up from gate, to adder, to memory cell, to
registers, and to the entire FPGA CLB..

Assessment methods:

Lecture: Midterm exam, final exam, homeworks.

Lab: Demo, reports, code, and exam.

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
Emphasizes tradeoffs among different implementation options, especially tradeoffs among use of
different circuit structures, different algorithms, different techniques for low power and
reliability, and different tools to achieve the metrics. The metrics for trade-offs are
performance/power/area/design_time/reliability.

Relationship of course to program outcomes: The contribution of CS168 to program
outcomes (a)-(k) or (1) – (10) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Understand basic operation of CMOS transistors 3 0 0 0 0 0 0 0 0 0 3
Be able to build simple logic gates from transistors 3 0 1 0 0 0 0 0 0 0 3
Be able to layout simple logic gates 3 0 2 0 0 0 0 0 0 0 3
Be able to create layouts for basic combinational and
sequential components

3 0 2 0 1 0 0 0 0 0 3

Understand modern chip design and fabrication issues,
challenges and trends

1 0 0 0 0 0 0 0 0 2 3

Understand how circuits are mapped to FPGAs 1 0 0 0 0 0 0 0 0 0 3

Prepared by, and date of preparation: Tom Payne, June 15, 2006

Computer Science & Engineering Course Syllabi-96

COURSE DESCRIPTION

Dept., Number CS, 170 Course Title
Units Course Coordinator Christian Shelton
Required/elective URL (if any):

Current Catalog Description
Introduction to fundamental problems underlying the design of intelligent systems and to one of
the languages of artificial intelligence such as Prolog or LISP. Topics include brute force and
heuristic search, problem solving, knowledge representation, predicate logic and logical
interference, frames, semantic nets, natural language processing, and expert systems.

Textbook
Artificial Intelligence: A Modern Approach, second edition by Russell & Norvig

References/Materials
none

Course Goals/Objectives
1:Learn the basic principles and techniques that have been developed to
address artificial intelligence, the problems for which they are applicable,
and their limitations.
2: Learn how to represent problems as search problems (defining ``states",
``operators", ``search spaces" etc).
3:Learn when/how to use blind search techniques.
4:Learn when/how to use heuristic search, how to design problem specific
heuristics.
5:Learn when/how to use optimizing search, how to quantify the trade-offs of
time/space complexity and solution quality.
6:Learn when/how to use adversarial search (Game playing search). How to
design evaluation functions. How to deal with probabilistic games/incomplete
information games.
7: Learn how to represent knowledge in various logical representations,
including propositional logic and first order logic, using syntax and
semantics.
8: Learn how to manipulate facts in logic representations. Theorem proving
(resolution) in logic systems.
9: Learn how to prepare/preprocess data to enable classification (for machine
learning), including discretization, dimensionality reduction, feature
generation etc.
10: Learn the advantages and disadvantages of the major classification
algorithms (decision trees, Bayes classifier etc). Which types of problems
each may be suitable for.

Computer Science & Engineering Course Syllabi-97

Prerequisites by Courses and Topics
CS 141

Major Topics Covered in the Course
AI methods: blind search, optimizing search, A* search, heuristics, predicate logic, propositional
logic, entailment, resolution, probabilities, machine learning, classification, decision trees

Laboratory schedule: number of sessions per week and duration of each session
1 3-hour session per week

Laboratory projects (specify number of weeks on each)
Programming problems in homework: 3, each for 2 weeks.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 15% 10% Data Structures 50%
Software Design Prog. Languages 5%
Comp. Arch.

Oral and Written Communications:
Every student is required to submit at least _0___ written reports (not including exams,
tests, quizzes, or commented programs) of typically _____ pages and to make _____
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Turing test and quantification of intelligence covered including methods and current state-
of-the-art. Discussion of current AI systems is included (autonomous driving, care for
elderly, for example) and tangentially their impact on society. Not graded.

Theoretical Content

Computer Science & Engineering Course Syllabi-98

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Propositional logic and predicate logic are covered as well as their relationship to
programming (through Prolog). Graph search and heuristics as lower bounds are covered.
Classification as decision boundaries in high-dimensional spaces is covered.

Problem Analysis

Please describe the analysis experiences common to all course sections.

Running time of graph search algorithms, analysis of heuristic’s validity (consistency and
admissibility), introduction to learning complexity (analysis of classifier’s complexity).

Solution Design

Please describe the design experiences common to all course sections.
Students must match problem specification to abstract solution concept (search, logical
entailment, or classification) and demonstrate how the solution method solves the problem.

Assessment methods
Four problem sets (50% total), one midterm (20%), one final (30%)

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
Students are exposed to and write programs with common AI algorithms (search, entailment,
classification) and see the limits and powers associated with each. Emphasis is placed on
students understanding of which solutions are applicable to which problem specifications.

Computer Science & Engineering Course Syllabi-99

Relationship of course to program outcomes: The contribution of CS170 to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Learn the basic principles and techniques that have been
developed to address artificial intelligence the problems for
which they are applicable and their limitations.

2 0 0 0 0 0 0 0 0 0 3

Learn how to represent problems as search problems
(defining ``states" ``operators" ``search spaces" etc).

2 0 3 0 3 0 0 0 0 0 3

Learn when/how to use blind search techniques. 2 0 3 0 1 0 0 0 0 0 3
Learn when/how to use heuristic search how to design
problem specificheuristics.

1 0 3 0 1 0 0 0 0 0 3

Learn when/how to use optimizing search how to quantify the
trade-offs of time/space complexity and solution quality.

3 0 3 0 3 0 0 0 0 0 3

: Learn when/how to use adversarial search (Game playing
search). How to design evaluation functions. How to deal
with probabilistic games/incomplete information games.

3 0 3 0 3 1 0 0 0 0 3

Learn how to represent knowledge in various logical
representations including propositional logic and first order
logic using syntax and semantics.

3 0 0 0 0 0 0 0 0 0 3

Learn how to manipulate facts in logic representations.
Theorem proving (resolution) in logic systems.

3 0 0 0 0 0 0 0 0 0 3

Learn how to prepare/preprocess data to enable
classification(for machine learning) including discretization
dimensionality reduction feature generation etc.

3 0 1 0 1 0 0 0 0 0 3

Learn the advantages and disadvantages of the major
classification algorithms (decision trees Bayes classifier etc).
Which types of problems each may be suitable for.

3 1 2 0 2 0 0 0 0 0 3

Prepared by, and date of preparation:
Teodor Przymusinski, 06/15/06

Computer Science & Engineering Course Syllabi-100

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 177

Course Title Modeling and Simulation

Units 4 Course
Coordinator

Mart Molle

Required/elective elective URL (if any): http://www.cs.ucr.edu/~mart/CS_17
7_Home_Spring_2004.html

Current Catalog Description: Topics include validation of random number sequences;
concepts in modeling and systems analysis; and conceptual models and their
mathematical and computer realizations. Examines simulation modeling techniques
including object-oriented modeling and discrete-event modeling. Emphasis is on the use
of simulation libraries used with programming languages such as C++. Requires a term
project consisting of the development, computer implementation, and analysis of a
model.

Textbook: A. M. Law and W. D. Kelton, Simulation Modeling and Analysis (third
edition), McGraw-Hill 2000.

References/Materials

• CSIM-19 Reference Guide, Mesquite Software, 2005
http://www.mesquite.com/documentation/index.htm

• M. Molle, Supplementary Lecture Notes on Discrete Event Simulation,
http://www.cs.ucr.edu/~mart/177/simulation_notes.pdf

Course Goals/Objectives:

1. Learn the process for developing functional models that can be used to study the

behavior of a dynamic system
2. Learn to apply elementary results from probability and statistics to modeling

problems, including the values of random variables and the times of random events
3. Learn how to analyze the output from a set of simulation experiments that include

random factors, to determine the statistical significance of those results.
4. Learn how experimental design can be used to increase the amount of information

you obtain from a given set of experiments
5. Learn to write programs using both the event-driven and process-interaction

paradigms

Prerequisites by Courses and Topics: CS 141: Intermediate Data Structures and
Algorithms. Explores basic algorithm analysis using asymptotic notations, summation
and recurrence relations, and algorithms and data structures for discrete structures
including trees, strings, and graphs. Also covers general algorithm design techniques
including “divide-and-conquer,” the greedy method, and dynamic programming.
Homework and programming assignments integrate knowledge of data structures,
algorithms, and programming.

Computer Science & Engineering Course Syllabi-101

Major Topics Covered in the Course
• Week1: Introduction to Simulation and Modeling
• Week2: Constructing a Simulation Model in a General Purpose Programming Language
• Week3: Concurrent Process Interaction models using the CSIM-19 Package
• Week4: Review of Probability and Statistics
• Week5: Confidence Intervals and Hypothesis Testing
• Week6: Selecting Input Distributions
• Week7: Random Number Generation
• Week8: Other Simulation Languages
• Week9: Output Analysis and Run Length Control
• Week10: Variance Reduction Techniques

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 3 hours.

Laboratory projects (specify number of weeks on each)

• Lab 1: (1 week) Study the program structure for a moderately-complicated simulation
program written in a general purpose language, using the gas station example described in
the supplementary notes. Compile and run the program after making a few minor
changes.

• Lab 2: (1 week) Learn to use the CSIM-19 package, and rewrite the gas station example as
a CSIM model.

• Lab 3: (2 weeks) Design and implement a complete simulation model for a simple system
in a general purpose language.

• Lab 4: (1 week) Use the built-in random number generators in CSIM to experimentally
validate the tabulated values for the standard normal and t-distributions.

• Lab 5: (2 weeks) Design and implement a complete simulation model for a more complex
system using CSIM-19.

• Lab 6: (1 week) Collect measurement data for the final experiment and pool the results
with other students to create a large empirical data set.

• Lab 7: (2 weeks) Incorporate the empirical data collected in Lab 6 into the complex
CSIM-19 simulation model developed in Lab 5 to carry out an extensive measurement
study, including proper output analysis.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 10 10 Data Structures 5 5
Software Design 5 5 Prog. Languages 5 5
Comp. Arch. 5

Oral and Written Communications:
Every student is required to submit at least ___1__ written reports (not including exams,
tests, quizzes, or commented programs) of typically __6___ pages and to make _____
oral presentations of typically _____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Computer Science & Engineering Course Syllabi-102

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Introduction to simulation and modeling describes applications of this methodology to
topics with significant social and ethical relevance, such as environmental models, risk
assessment in systems subject to catastrophic failure (eg., dams to survive once-per-century
flooding), and training systems for dangerous activities. It is covered in short-answer test
questions. (1 lecture)

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Efficient data structures to support priority queues, which represent the continuously-
updated list of pending events, such as lists, heaps, and calendar queues (1 hour). Core
topics from probability and statistics, including the Central Limit Theorem; Strong Law of
Large Numbers; confidence intervals; hypothesis testing; independence; random processes
(including transient versus equilibrium behavior); calculation of the moments of a
probability distribution (including lost precision due to numerical cancellation errors);
random number generators (including tests for uniformity and independence); tests for
goodness-of-fit (8 hours).

Problem Analysis

Please describe the analysis experiences common to all course sections.

Students will learn to analyze the requirements and goals of the projects, identify the
important components and analyze the efficiency of their solutions. More specifically,
students will apply rigorous statistical analysis to determine the significance of their
experimental results via confidence intervals, variance reduction techniques, etc. Students
will gather empirical data to parameterize their models and compare their data to theoretical
distributions.

Solution Design

Please describe the design experiences common to all course sections.

Understanding the process of model formulation: separating the system from its
environment; identifying the significant components of its state and possible events leaving
to state changes; validation. Learning to program in a multi-threaded environment, including
race conditions, critical sections, signals, queues and other inter-process communication
paradigms. Evaluating the success of their design by testing against known benchmarks, the
use of assertions to catch anomalous behavior.

Assessment methods:

Computer Science & Engineering Course Syllabi-103

20% Programming problems
20% Final Project
20% Midterm test
40% Final exam

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
Students must gather their own empirical measurement data to parameterize the experiments in
the Final Project. Students must report the level of significance of their findings, i.e., not only
that customer waiting times were reduced by an average of 5 minutes under the improved
scheduling plan, but that the 95% confidence interval for the magnitude of the improvement was
+/- 6 minutes, and hence explain that their results are inconclusive without additional tests.

Relationship of course to program outcomes: The contribution of CS177 to program
outcomes (a)-(k) or (1) – (5) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Learn process for creating functional models 3 0 1 0 0 0 0 0 0 0 3
Learn to apply elementary probability and statistics,
including values for random variables and times for random
events

3 3 0 0 0 0 0 0 0 0 3

Learn output analysis from a set of experiments to determine
its statistical significance

3 3 0 0 0 0 0 0 0 0 3

Learn to use experimental design to increase the information
provided by a given set of experiments

3 3 0 0 0 0 0 0 0 0 3

Learn to write programs using both the event-driven and
process-interaction paradigms

3 0 2 0 2 0 0 0 0 0 3

Prepared by, and date of preparation:

Mart Molle, June 20, 2006

Computer Science & Engineering Course Syllabi-104

COURSE DESCRIPTION

Dept., Number CS 179 Course Title Project in Computer Science
Units 4 Course Coordinator Christian Shelton
Required/elective required URL (if any):

Current Catalog Description
Under the direction of a faculty member, students (individually or in small teams with shared
responsibilities) propose, design, build, test, and document software and/or hardware devices or
systems. Requires a written report, giving details of the project and test results, and an oral
presentation of the design aspects. Emphasizes teamwork, making technical presentations, and
developing oral and written communication skills.

Textbook
varies from offering to offering

References/Materials
ACM Code of Ethics and Professional Responsibility, other topical information, plus additional
material that varies from offering to offering.

Course Goals/Objectives
1: balancing design tradeoffs: cost performance schedule and risk
2: Writing project proposals
3: Team-project organization and management (including time lines)
4: Requirements capture and analysis
5: design and architecture
6: prototyping (possibly via simulation)
7: verification/validation
8: writing and presenting final reports
9: engineering professionalism and responsibility
10: engineering careers and the modern world

Prerequisites by Courses and Topics
CS 141 with a grade of "C-" or better; ENGR 180; 12 additional upper-division units in
Computer Science. Each offering of CS179 is oriented toward a particular topic such as
compilers, in which case it would have our upper-division course on compilers, CS152, as a
prerequisite. Similarly for all other topics.

Major Topics Covered in the Course
teamwork, technical presentations, oral and written communication, various technical topics as
per course offering

Computer Science & Engineering Course Syllabi-105

Laboratory schedule: number of sessions per week and duration of each session
nine lab-hours per week, three of which are rigidly scheduled per week, the remainder as desired
by the students

Laboratory projects (specify number of weeks on each)
project proposal (2 weeks), design specification (2 weeks), final project (10 weeks)

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 10% Data Structures
Software Design 15% Prog. Languages
Comp. Arch.

Oral and Written Communications:
Every student is required to submit at least __1___ written reports (not including exams,
tests, quizzes, or commented programs) of typically __20___ pages and to make __1___
oral presentations of typically __15___ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Professional codes of ethics, social implications of created artifacts including current
modern systems. Discussion of current systems in the topic area. Final report must include
section on societal impact.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Varies by topic. Usually advanced algorithms or architectures required for design project.

Problem Analysis

Please describe the analysis experiences common to all course sections.

Computer Science & Engineering Course Syllabi-106

Students must take a user-specified task and break it into engineering components.

Solution Design

Please describe the design experiences common to all course sections.
Students must take the components and design, specify, and build each one to complete the
final project.

Assessment methods
Preliminary Specifications (20%), Teamwork/weekly reports (20%), Final Project (20%), Final
Report (20%), Final Presentation (20%)

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
This course directly involves the student in the identification of an engineering problem, the
design and specification of a system to meet the problem’s needs, the implementation of the
solution, and the presentation of the results. Throughout the course, the students work in teams
and must deal with team dynamics and scheduling. Students are responsible for making periodic
“reports” to the project manager (the instructor).

Relationship of course to program outcomes: The contribution of CS179 to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Balancing design tradeoffs: cost performance schedule and
risk

2 0 3 3 3 0 0 0 0 0 3

Writing project proposals 0 0 0 3 3 0 3 0 0 0 3
Team-project organization and management (including time
lines)

0 0 2 3 0 0 3 0 0 0 3

Requirements capture and analysis 2 0 3 3 3 0 0 0 0 0 3
Design and architecture 2 0 0 3 3 0 0 0 0 0 3
Prototyping (possibly via simulation) 3 3 0 3 3 0 0 0 0 0 3
verification/validation 3 3 0 3 0 0 0 0 0 0 3
8: writing and presenting final reports 0 0 0 3 0 0 3 0 0 0 3
engineering professionalism and responsibility 0 0 0 0 0 3 0 0 0 1 3
engineering careers and the modern world 0 0 0 0 0 3 0 3 3 3 3

Computer Science & Engineering Course Syllabi-107

Prepared by, and date of preparation:
Christian Shelton – 06/15/06

Computer Science & Engineering Course Syllabi-108

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 180

Course Title Introduction to Software
Engineering

Units 4 Course
Coordinator

Teodor Przymusinski

Required/elective elective URL (if any):

Current Catalog Description: A study of software engineering techniques for the
development, maintenance, and evolution of large software systems. Topics include
requirements and specification; system design and implementation; debugging, testing,
and quality assurance; reengineering; project management; software process; tools; and
environments.

Textbook:

References/Materials

- (Required) C. GHEZZI, M. JAZAYERI AND M. MANDRIOLI, Software Engineering, Prentice
Hall, 2003, Sec. Edition, ISBN 0-13-305699-6

- (Recommended) John Sharp, Microsoft Visual C# 2005 Step by Step, ISBN 13-978-0-
7356-2129-9, Microsoft 2005.

Course Goals/Objectives:

59. Provide students with a broad overview of software engineering, covering all
phases of the software lifecycle and a variety of software process models

60. Provide students with a variety of techniques for requirements analysis,
architectural and detailed design, validation and verification, as well as planning
and management

61. Provide students with practical experience in applying such techniques by
producing a (small) software product throughout the course and handing in certain
documents as required in a ``classical" (i.e. non-agile) setting as milestones

62. Allow students to gain experience in scheduling and managing their projects
using a hands-off approach to team formation, planning, and form of deliverables

Prerequisites by Courses and Topics: CS 141: Intermediate Data Structures and
Algorithms. Explores basic algorithm analysis using asymptotic notations, summation
and recurrence relations, and algorithms and data structures for discrete structures
including trees, strings, and graphs. Also covers general algorithm design techniques
including “divide-and-conquer,” the greedy method, and dynamic programming.
Homework and programming assignments integrate knowledge of data structures,
algorithms, and programming.

Major Topics Covered in the Course

Computer Science & Engineering Course Syllabi-109

Introduction: Chapters 1-3.
Software Product: Chapters 4-6.
Software Process & Management: Chapter 7.
Selected case studies.
Selected topics from remaining chapters time permitting.

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 3 hours Laboratory projects (specify number of weeks on
each)

One week of orientation and general introduction to software engineering
One week of introduction to the language and the software environment (Visual Studio 2005)
Two weeks of preparation for the first team project
Two weeks of preparation for the second team project
One week of preparation for the midterm
Two weeks of preparation for the third team project
One week of preparation for the final

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms Data Structures 5%
Software Design 45% 20% Prog. Languages 20% 10%
Comp. Arch.

Oral and Written Communications:
Every student is required to submit at least _6____ written reports (not including exams,
tests, quizzes, or commented programs) of typically __2-3___ pages and to make
__0___ oral presentations of typically __0___ minute’s duration. Include only material
that is graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

The are taught the golden rule with respect to error messages, and are shown easy ways to
make error messages more helpful. The only feedback on that is in the form of advice from
the TAs during labs.

The students are lectured on the importance of high-level programming languages to
programmer productivity and the importance of programmer productivity to all of
information technology.

Computer Science & Engineering Course Syllabi-110

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

The theoretical content is limited due to the fact that the course mostly concentrates on the
principles and practice of software design

Problem Analysis

Please describe the analysis experiences common to all course sections.

All teams must prepare software specification and software design documentation for their
projects and follow it up with the careful analysis of project design and implementation at its
completion

Solution Design

Please describe the design experiences common to all course sections.

Students learn how to collaborate with one another by working in teams, to follow principles
of structured design and proper software testing and assessment methods. We also
emphasize proper documentation techniques

Assessment methods:

Quizzes and Lab assignments 10%

Midterm and Final Exam 50%

Programming assignments 40%

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
Software design process is of course a special case of the engineering software design process.
Thus, in essence, the entire course is devoted to preparing students for engineering practice by
learning to apply proper software, design, testing and evaluation principles and techniques

Relationship of course to program outcomes: The contribution of CS 180 to program
outcomes (a)-(k) or (1) – (4) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Computer Science & Engineering Course Syllabi-111

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Provide students with a broad overview of software
engineering, covering all phases of the software lifecycle and
a variety of software process models

0 0 0 0 0 1 0 0 0 0 3

Provide students with a variety of techniques for
requirements analysis, architectural and detailed design,
validation and verification, as well as planning and
management

3 2 1 0 0 0 0 0 0 0 3

Provide students with practical experience in applying such
techniques by producing a (small) software product
throughout the course and handing in certain documents as
required in a ``classical" (i.e. non-agile) setting as milestones

1 1 3 0 2 2 2 0 0 0 3

Allow students to gain experience in scheduling and
managing their projects using a hands-off approach to team
formation, planning, and form of deliverables

1 1 2 0 2 2 2 0 0 0 3

Prepared by, and date of preparation:
Teodor Przymusinski 6/22/06

Computer Science & Engineering Course Syllabi-112

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 181

Course Title Principles of Programming
Languages

Units 4 Course
Coordinator

Teodor Przymusinski

Required/elective elective URL (if any):

Current Catalog Description: Principles of programming language design. Study and
comparison of several programming languages, their features and their implementations.

Textbook:

References/Materials
C. Ghezzi and M.Jazayeri, Programming Language Concepts, John Wiley.
Textbook's home page: http://www.infosys.tuwien.ac.at/pl-book/

Course Goals/Objectives:

63. Provide students with a broad background in programming languages, working
from principles and theoretical foundations as well as concrete example languages

64. Theoretical foundations include formal syntax, lambda calculus, formal
semantics, type systems and inference, etc.

65. Concrete example languages include Scheme, Prolog, ML, Modula-3, Simula,
Smalltalk, C++, and Java

66. Provide students practical experience in applying various languages to (really
small) problems

67. Encourage students to study on their own either (1) a separate language, writing a
tutorial on it or (2) investigate one or more language constructs in detail by
developing a suitable interpreter

Prerequisites by Courses and Topics: CS 061: Machine Organization and Assembly
Language Programming; CS 141: Intermediate Data Structures and Algorithms (CS 141
may be taken concurrently); CS 150: Theory of Automata and Formal Languages.

Major Topics Covered in the Course

- Chapter 1: Introduction.
- Chapter 2: Syntax and Semantics.
- Chapter 3: Structuring the Data
- Selected sections from Chapters 4, 5, 6, 7, 8
- Brief introduction to Prolog and Java.

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 3 hours.

Computer Science & Engineering Course Syllabi-113

Laboratory projects (specify number of weeks on each)
One week of orientation and general introduction to programming languages
Two weeks of preparation for the first project
Two weeks spent on learning the SIMPLESEM
One week of preparation for the midterm
Two weeks of preparation for the second project
Two weeks of brief intro to two non-procedural languages, e.g., Prolog and LISP
One week of preparation for the final

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 5% Data Structures 5%
Software Design Prog. Languages 70% 20%
Comp. Arch.

Oral and Written Communications:
Every student is required to submit at least __0___ written reports (not including exams,
tests, quizzes, or commented programs) of typically ___0__ pages and to make __0___
oral presentations of typically __0___ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

The are taught the golden rule with respect to error messages, and are shown easy ways to
make error messages more helpful. The only feedback on that is in the form of advice from
the TAs during labs.

The students are lectured on the importance of high-level programming languages to
programmer productivity and the importance of programmer productivity to all of
information technology.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Students learn basic principles of programming language design. Theoretical
foundations include formal syntax, lambda calculus, formal semantics, type systems and
inference, etc.

Computer Science & Engineering Course Syllabi-114

Problem Analysis

Please describe the analysis experiences common to all course sections.

Analytical experience is limited to the testing and evaluation of student projects

Computer Science & Engineering Course Syllabi-115

Solution Design

Please describe the design experiences common to all course sections.
Design experience is limited to the design of student projects

Assessment methods:

Midterm Exam 20%

Final Exam 45%

Programming assignments (2) 25%

Lab work 10%

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
By learning principles of programming languages students will not only better understand the
features and the limitations of languages they are familiar with but will be much better prepared
to learn new languages which will inevitably appear in the new future.

Relationship of course to program outcomes: The contribution of CS 181 to program
outcomes (a)-(k) or (1) – (5) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Provide students with a broad background in programming
languages, working from principles and theoretical
foundations as well as concrete example languages

2 0 0 0 0 0 0 0 0 0 3

Theoretical foundations include formal syntax, lambda
calculus, formal semantics, type systems and inference, etc.

3 0 0 0 0 0 0 0 0 0 3

Concrete example languages include Scheme, Prolog, ML,
Modula-3, Simula, Smalltalk, C++, and Java

2 0 0 0 0 0 0 0 0 0 3

Provide students practical experience in applying various
languages to (really small) problems

2 0 1 0 1 0 0 0 0 0 3

Encourage students to study on their own either (1) a separate
language, writing a tutorial on it or (2) investigate one or
more language constructs in detail by developing a suitable
interpreter

1 0 0 0 0 1 1 0 3 1 3

Prepared by, and date of preparation:
Teodor Przymusinski 6/22/06

Computer Science & Engineering Course Syllabi-116

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 183

Course Title UNIX System Administration

Units 4 Course
Coordinator

Victor Hill

Required/elective elective URL (if any):

Current Catalog Description: Technical aspects of system administration on a Unix
system including advanced Unix, managing system devices, operating system
installation, communications, and networking.

Textbook: UNIX System Administration Handbook, 3rd Edition, Evi Nemeth, Garth
Snyde, Scott Seebass, Trent Hein

References/Materials
http://moodle.cs.ucr.edu/moodle/course/category.php?id=10
Course webpages for offerings of CS 183

Course Goals/Objectives:

- Demonstrate proficiency in installing, using, and administrating UNIX-based
operating systems.

- Create software tools to administrate systems tasks, including configuration and
maintenance.

- Understand security issues including physical security, network security, and
encryption.

- Project-based knowledge of fundamental network protocols.
- Installation and configuration of network services, including open-source file

service, electronic mail, name service and other core network based services.
- Analysis and evaluation of best practices of system administration related to the

topics above.

Prerequisites by Courses and Topics: CS 141: Intermediate Data Structures and
Algorithms. Explores basic algorithm analysis using asymptotic notations, summation
and recurrence relations, and algorithms and data structures for discrete structures
including trees, strings, and graphs. Also covers general algorithm design techniques
including “divide-and-conquer,” the greedy method, and dynamic programming.
Homework and programming assignments integrate knowledge of data structures,
algorithms, and programming.

Major Topics Covered in the Course: UNIX environment: the command line, utilities,
piping and redirection, interaction with the file system and processes. Operating System:
installation and configuration of various distributions of Linux. User management:
adding and removing accounts, and controlling resource access. TCP/IP networking: the

Computer Science & Engineering Course Syllabi-117

TCP/IP protocol stack, routing, security issues. Network Services: topics including
domain name service, web, email, file, and authentication services.

Computer Science & Engineering Course Syllabi-118

Laboratory schedule: number of sessions per week and duration of each session:
Seminar, 3 hours; laboratory, 3 hours.

Laboratory projects (specify number of weeks on each)
Familiarity with UNIX environment (1)
Installation of Linux(1)
Installation and Configuration of Software (1)
Apache web server(1)
Postgresql database server(1)
LDAP and Kerberos directory services and authentication(1)
Samba file service(1)
Postfix mail server(1)
Antivirus/Antispam software(1)
Dovecot MAA server(1)

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 5 5 Data Structures 5 5
Software Design 15 25 Prog. Languages 10 20
Comp. Arch. 5 5

Oral and Written Communications:
Every student is required to submit at least __2___ written reports (not including exams,
tests, quizzes, or commented programs) of typically __5___ pages and to make __1___
oral presentations of typically ___15__ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Students learn the importance of social and ethical issues by working in teams and
participating in discussions of network security and ethical responsibilities related to the
system administration field.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Computer Science & Engineering Course Syllabi-119

UNIX operating system – 6 lectures
TCP/IP networking – 6 lectures
Network Services – 3 lectures
Configuration management – 3 lectures

Problem Analysis

Please describe the analysis experiences common to all course sections.

Students will learn to analyze the requirements and goals of the projects, identify the
important components and analyze the efficiency of their solutions.
The students will learn the importance of analysis through hands-on experience.

Solution Design

Please describe the design experiences common to all course sections.

A primary goal of the course is the design of solutions that meet project requirements. The
students will design, implement and test software tools that automate system tasks and
integrate related network services.
The students will learn the importance of solution design through hands-on experience. This
will help them understand the complexity of building real systems.

Assessment methods: Homework / Labs, 30%; Projects, 25%; Exams, 45%.

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
Students will learn how to design software that performs system maintenance and integrates the
operation of numerous network services such as database, web, email, and authentication
services, thus they will understand the overall engineering design process (identification of
constraints, description of design criteria and objectives, usage of tools, development of a
prototype, evaluation of the prototype based on the design criteria). Students will get hands-on
experience in proposing, designing and executing the project.
Students will also learn how to work in teams; each student will actively participate as a member
of a team, collaborate with the other team members, share the daily design activities and
management of the project and contribute to achieve the project goals. At the end of the project,
they will have to write a team report that describes their design, thus they will learn how to
communicate their ideas effectively.

Relationship of course to program outcomes: The contribution of CS 183 to program
outcomes (a)-(k) or (1) – (6) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Computer Science & Engineering Course Syllabi-120

Demonstrate proficiency in installing, using, and
administrating UNIX-based operating systems.

1 0 0 0 0 0 0 0 0 0 3

Create software tools to administrate systems tasks,
including configuration and maintenance.

1 0 2 0 2 0 0 0 0 0 3

Understand security issues including physical
security, network security, and encryption.

1 0 0 0 0 2 0 0 0 0 3

Project-based knowledge of fundamental network
protocols.

1 0 1 0 0 0 0 0 0 0 3

Installation and configuration of network services,
including open-source file service, electronic mail,
name service and other core network based services.

1 0 0 0 0 0 0 0 0 0 3

Analysis and evaluation of best practices of system
administration related to the topics above.

0 0 0 0 0 1 0 0 1 1 3

Prepared by, and date of preparation: Victor Hill, June26, 2006

Computer Science & Engineering Course Syllabi-121

COURSE DESCRIPTION

Dept., Number ENGR 180 Course Title Technical Communications
Units 4 Course Coordinator S. Burton, B. Graham
Required/elective required URL (if any): http://moodle.cs.ucr.edu

Current Catalog Description
Develops oral, written, and graphical-communication skills. Involves extensive oral
communication and presentations in small groups, and preparing and critiquing reports,
proposals, instructions, and business correspondence. Emphasizes professional and ethical
responsibilities, and the need to stay current on technology and its global impact on economics,
society, and the environment.

Textbook
The Inmates are Running the Asylum, Cooper
The Elements of Technical Writing

References/Materials
Course website.
http://www.vark.com
http://www.clearspecs.com

Course Goals/Objectives

1. an ability to participate and contribute to discussions and meetings, both in leading and
nonleading roles.

2. an ability to make cogent, well-organized verbal presentations, with and without visual
aids prepared via presentation software.

3. an ability to produce cogent, well-written documents (including email).

4. an understanding of professional and ethical responsibility, particularly regarding well-
designed human interfaces including documentation.

5. an understanding of what is expected in the professional workplace, including the need
for long-term professional development.

Prerequisites by Courses and Topics
ENGL 001C or ENGL 01SC

Major Topics Covered in the Course

Computer Science & Engineering Course Syllabi-122

Importance of communication in science and engineering, defining an audience, organizing and
drafting documents, revising for organization and style, developing graphics, conducting
meetings, memos/letters/email, proposals, progress reports, articles, instructions and procedures,
electronic text, oral presentations, job search documents. Also, inductive and deductive
reasoning, truth tables, presentation style and skills, VARK, use cases, mind maps, grammar and
style, writing functional specifications, usability testing, explanations and simplification,
drafting and revision, visual gestalt in design, designing for online use.

Laboratory schedule: number of sessions per week and duration of each session
One three-hour session per week

Laboratory projects (specify number of weeks on each)
Language arts diagnostics and resumes (1)
Diagramming and truth tables(1)
Writing for business final project lab work(1)
Persona and scenario writing (1)
Outlining a spec (1)
Functional spec draft(1)
Drafting and alpha doc test (1)
Revising and beta doc test (1)
Paper Airplane, revised(1)

Each session involves some of the following: oral presentations (with and without graphical
 aids), small group meetings (leading and non-leading roles), group problem solving, critiquing
written and oral presentations.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 0 0 Data Structures 0 0
Software Design 0 0 Prog. Languages 0 0
Comp. Arch. 0 0

Oral and Written Communications:
Every student is required to submit at least __15___ written reports (not including
exams, tests, quizzes, or commented programs) of typically __2___ pages and to make
___1__ oral presentations of typically __15__ minute’s duration. Include only material
that is graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Computer Science & Engineering Course Syllabi-123

Ethical implications of poor documentation are discussed, and students are required to
produce high-quality documentation and to rewrite poor documentation.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Students are expected to understand critical thinking & logic as is applies to writing, and to
synthesize that with other topics (~2 hours instruction, 3 hours lab).
Students are exposed to a variety of design & layout theories, including visual gestalt, and
expected to discuss these topics not only theoretically, but articulate practical applications as
well (~4-6 hours lecture, scattered throughout course)
Students are exposed to cognitive processing and learning theory, and how it applies to
interfaces and documentation (4-6 hours lecture, scattered throughout course)

Problem Analysis

Please describe the analysis experiences common to all course sections.

Audience analysis – VARK, surveys, personas. Documentation analysis – fixing poor
documentation, drafts, revisions, functional specification.

Solution Design

Please describe the design experiences common to all course sections.
Not applicable.

Assessment methods
40% written exams covering theory and writing, 10% homework,
 30% presentations, 20% participation.

Students are checked off on work completed in labs, are graded on drafts, revisions, and
completed documents, and take quizzes and exams that have multiple choice and essay questions.

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.

Computer Science & Engineering Course Syllabi-124

Students must learn to follow instructions, work in teams, give presentations, and produce
documentation aimed at management, peers, and end users, to articulate technical information
gracefully and usably, and to understand the key differences between themselves and their
audience(s).

Relationship of course to program outcomes: The contribution of Engr 180 to program
outcomes (a)-(k) or (1) – (5) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

 an ability to participate and contribute to discussions and
meetings, both in leading and nonleading roles.

0 0 0 3 0 1 3 0 0 0 0
an ability to make cogent, well-organized verbal
presentations. 0 0 0 3 0 0 3 0 0 0 0

an ability to produce cogent, well-written documents.
0 0 0 0 0 2 3 0 0 0 0

 an understanding of professional and ethical responsibility,
particularly regarding well-designed human interfaces
including documentation.

0 0 0 0 0 3 0 0 0 0 0

 an understanding of what is expected in the professional
workplace, including the need for long-term professional
development

0 0 0 0 0 3 0 0 0 0 0

A. Not applicable.
B. User survey and their analysis.
C. Functional specification.
D. The entire class, but most especially the material on user surveys and functional
specifications.
E. The material functional specification and user analysis
F. The lectures *extensively* cover professional and ethical responsibility.
G. The entire class, e.g., the logic lectures strongly map to this, as does the presentation
unit.
H. Same as G
I. The entire class.
J. Professional and ethical issues come up in the material on functional specification.
"What do you do if you are asked to design something that is a "cheat" in that it short cuts
and may be unsafe?"
K. The class as a whole.

Computer Science & Engineering Course Syllabi-125

Regarding assessment of the achievement of these outcomes, the deliverables at the end
of each of the three units are the measurements. These are graded as though they are
business deliverables in the workplace, because they are. The deliverables - resume,
functional spec, presentation - are things they will deliver in the workplace one day. We
grade them as though these are from colleagues who want our opinion before they
distribute.

The final exam contains questions targeting the outcomes that are covered. We
especially look for synthesis of the concepts on the final. Those get full credit.

We can't measure whether or not they will do life long learning, but we sure talk about it
a lot.

Prepared by, and date of preparation:
Tom Payne with help from Sharon Burton, Bonni Graham, and Victor Hill, 6/27/06

