
Response to CAC’s Draft Statement

Department of Computer Science, UC Riverside

February 21, 2007

Abstract

This document details the changes made to the CS curriculum to address the
weakness in coverage of social and ethical issues in computing (Standard IV-17)
mentioned in CAC’s Draft Statement regarding its 2006 review of the Computer
Science degree program at UC Riverside.

1 Relevant Portions of Draft Statement

This document is in response to the following paragraph on page 4 of CAC’s
Draft Statement regarding the 2006 review of the Computer Science program
at the University of California, Riverside.

The program meets the intent of the Curriculum Category by sat-
isfying all associated standards. However, there is a concern with
respect to Standard IV-17 that constitutes a weakness with respect
to the Curriculum Category.

In its conclusion on page 9, the Draft Statement elaborates on this point as
follows:

However, there is a weakness with respect to the Curriculum Cat-
egory. This weakness is most closely associated with Standard
IV-17. Specifically,

1. (Standard IV-17) Adequate coverage of social and eth-
ical issues in computing must be assured and the current
lack of faculty consensus in addressing these topics results
in significant uncertainty that adequate coverage of this
topic will be sustained.

1

The weakness may affect the stability, overall quality, or future
accreditation of the program and will be of special interest to the
next visiting team.

2 Action Taken

To address this weakness, UC Riverside’s Department of Computer Science
and Engineering has:

• expanded one of the CS program’s outcomes, namely outcome J, which
previously read: “a knowledge of contemporary issues,” to now read:
“a knowledge of contemporary issues, including ethical and social
issues.” [emphasis added],

• made outcome J an explicit objective of four upper-division (i.e. junior/senior-
level) required courses:1

– CS 152 (Compiler Design)

– CS 153 (Design of Operating Systems)

– CS 161 (Design and Architecture of Computer Systems)

– CS 179 (Project in Computer Science),

• modified the syllabi of those four courses to explicitly note the aspects
of “ethical and social issues” to be covered in each case,

• and prepared an instructor’s manual with a taxonomy of social and
ethical topics to cover.

2.1 Rationale

The CS&E faculty believe that students are best served by teaching ethical
and social issues alongside their regular course work. If, instead, a separate
course were to be added to the curriculum to address these instructional
points, the students would view ethical and social issues as separate from

1Each course has say five to ten course objectives, which are related to program out-
comes via a course matrix. Course objectives are areas of knowledge and/or skill that
students should have mastered by the end of the course. These should not be confused
with Program Educational Objectives, which per EAC are “broad statements that describe
the career and professional accomplishments that the program is preparing graduates to
achieve.”

2

the rest of computer science. By teaching them alongside technical material,
instructors can link the technical and social concepts, provide more germane
examples, and encourage students to view both ethical and social issues, as
well as technical issues, as critical to the engineering-design process.

Placing explicit reference to ethical and social issues in the program out-
comes and the course-level objectives of four upper-division courses stresses
to all constituents that the program addresses these issues. To mandate
that instructors cover these issues, via classroom time and testing resources,
within these four courses, the syllabus of each course now explicitly reflects
this objective.

Finally, to ensure some consistency of coverage across offerings of a given
course and across the program, an instructor manual with specifics on in-
struction and coordination among courses is provided to all instructors. It
provides suggestions on topics and methods for instruction and testing com-
prehension.

Instructors are charged with testing for each course objective on the final
exam or with essays. Those per-question scores are individually recorded and
assessed as part of the departmentwide assessment process that measures the
degree to which program outcomes are being achieved.

3 Supporting Materials

The following supporting materials are attached.

• an updated list of program outcomes.

• updated syllabi and course objectives for CS 152, CS 153, CS 161, and
CS 179.

• the current draft of the instructor’s manual.2

2We expect this manual to be updated with additional examples and areas of social
and ethical concern.

3

ATTACHMENT: UPDATED LIST OF COMPUTER SCIENCE PROGRAM OUTCOMES

The following are the program outcomes for UCR’s B.S. degree program in Computer Science:

(a) an ability to apply knowledge of mathematics, science, and engineering

(b) an ability to design and conduct experiments, as well as to analyze and interpret data

(c) an ability to design a system, component, or process to meet desired needs within realistic
constraints such as economic, environmental, social, political, ethical, health and safety,
manufacturability, and sustainability

(d) an ability to function on multi-disciplinary teams

(e) an ability to identify, formulate, and solve engineering problems

(f) an understanding of professional and ethical responsibility

(g) an ability to communicate effectively

(h) the broad education necessary to understand the impact of engineering solutions in a global,
economic, environmental, and societal context

(i) a recognition of the need for, and an ability to engage in life-long learning

(j) a knowledge of contemporary issues, including social and ethical issues

(k) an ability to use the techniques, skills, and modern engineering tools necessary for
engineering practice.

CS 152 page 1

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 152

Course Title Compiler Design

Units 4 Course
Coordinator

Tom Payne

Required/elective required URL (if any):

Current Catalog Description: Covers the fundamentals of compiler design, including
lexical analysis, parsing, semantic analysis, compile-time memory organization, run-time
memory organization, code generation, and compiler portability issues. Laboratory work
involves exercises covering various aspects of compilers.

Textbook: Modern Compiler Implementation in Java (second edition) by Andrew Appel
and Jens Palsberg

References/Materials
The web site for the text, http://www.cs.princeton.edu/~appel/modern/java/. Also, when Tom
Payne teaches the class, the first seven chapters (75 pages) of his notes on Compiler Design,
which he distributes to the students in postscript, dvi, and html formats.

Course Goals/Objectives:

1. Provide students with a basic understanding of the design and functionality
provided by compilers and interpreters, including theoretical foundations as far as
necessary

2. Provide students with practical experience building a compiler for a (small)
imperative programming language, ideally generating code for an actual machine

3. Using compilers, a well-explored field from the perspective of software
engineering, illustrate various useful design and implementation techniques,
focusing on object-oriented ones

4. Provide students with an understanding of contemporary social and ethical issues
in computer science

Prerequisites by Courses and Topics: CS 061: Machine Organization and Assembly
Language Programming; CS 141: Intermediate Data Structures and Algorithms; CS 150:
Theory of Automata and Formal Languages

Major Topics Covered in the Course

CS 152 page 2

 Automatic generators for lexical analyzers (scanners): review of the set-of-states

construction for determinizing nondeterministic finite automata, use of ordered EBNF to
describe lexical categories, lookahead, left-context, case-study LEX, compression of state
table.

 Automatic generators for LALR parsers: Converting context-free grammars (BNF) to
“railroad diagrams” to nondeterministic PDAs. Determinizing NPDAs: LR(0) tables,
LR(1) tables, generating LALR tables from LR(1) table, LALR table by identifying states
during construction of LR(1) table and propagation of lookaheads.

 Syntax-directed translation.
 The run-time environments including allocation and accessing of static, dynamic and

automatic objects.
 Contemporary social and ethical issues (computer crime and software integrity)

Laboratory schedule: number of sessions per week and duration of each session:
Lecture, 3 hours; laboratory, 3 hours

Laboratory projects (specify number of weeks on each)
One week of orientation to the term project, which is to construct a compiler for the MiniJava
language specified at the back of the textbook.
One week on the use of LEX (FLEX) and generating scanner for term project.
One week on the use of YACC (BISON) and generating parser for term project.
One week on the building of the syntax tree for the term project.
Two weeks on semantic analysis and checking for the term project.
Three weeks on code generation for the term project.

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 5.00% Data Structures 5.00%
Software Design 24.00% Prog. Languages 33.00% 33.00%
Comp. Arch.

Oral and Written Communications:
Every student is required to submit at least __0___ written reports (not including exams,
tests, quizzes, or commented programs) of typically __0___ pages and to make ___0__
oral presentations of typically ___0__ minutes duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

CS 152 page 3

Students have at least one hour of lecture on contemporary social and ethical issues,
focusing on software integrity and computer crime. Students are tested with an essay, either
in class or on the final exam.

The students are lectured on the importance of high-level programming languages to
programmer productivity and the importance of programmer productivity to all of
information technology.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

This course is where the material such as context free grammars and syntax trees is put to
practical use in building important tools. Specifically, the set-of-states construction learned
in the theory of computation class is used in the construction of scanner generators and
parser generators. (That construction is covered only in class. Then the students use such
generators in the development of the scanner and parser for their term project.)

Problem Analysis

Please describe the analysis experiences common to all course sections.

The analysis and design for the overall framework for the term project is presented in class
and follows the presentation in the text. The analysis and design for some of the
components (semantic analyzers and code generators for the individual expressions,
declarations, and statements) are presented in class, but the students must do the rest on their
own, with some in-lab help from the TAs.

Solution Design

Please describe the design experiences common to all course sections.

Part of the description of design experience is given in the box above. Beyond that, we tend
to emphasize object-oriented, test-driven design. We recommend that students treat each
type of node in the syntax tree as a class, with the various kinds of expressions being
subclasses of the Expression class, etc. Each of those classes must have a constructor, a
method for doing semantic analysis, and a method for generating code. So, each class
become a nicely constrained design problem.

Assessment methods: Final exam: 34%; Project: 33%; Quizzes: 33%.

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.

CS 152 page 4

The design and implementation of a compiler is a significant design experience and teaches a lot
about good coding and testing practices. But in CS152 the training wheels are on. Students are
presented with much of the top-level analysis and design, and they are coached a lot on how to
stay out of trouble. This is realistic preparation for the capstone design courses, in which the
training wheels are off.

Relationship of course to program outcomes: The contribution of CS152 to program
outcomes (a)-(k) or (1) – (3) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Provide students with a basic understanding of the design and
functionality provided by compilers and interpreters,
including theoretical foundations as far as necessary

1 0 0 0 0 0 0 0 0 0 3

Provide students with practical experience building a
compiler for a (small) imperative programming language,
ideally generating code for an actual machine

3 0 3 0 1 0 0 0 0 0 3

Using compilers, a well-explored field from the perspective
of software engineering, illustrate various useful design and
implementation techniques, focusing on object-oriented ones

3 0 2 0 1 0 0 0 0 0 3

Provide students with an understanding of contemporary
social and ethical issues

0 0 0 0 0 0 0 0 0 3 0

Prepared by, and date of preparation:
Tom Payne 6/18/06

CS 153 page 1

COURSE DESCRIPTION

Dept., Number Computer

Science and
Engineering,
CS 153

Course Title Design of Operating Systems

Units 4 Course Coordinator Vana Kalogeraki
Required/elective Required URL (if any): http://www.cs.ucr.edu/~vana/cs153

Current Catalog Description
Principles and practice of operating system design, including concurrency, memory management,
file systems, protection, security, command languages, scheduling, and system performance.
Laboratory work involves exercises covering various aspects of operating systems

Textbook
Operating System Concepts by Avi Silberschatz, Peter Baer Galvin, Greg Gagne, John Wiley &
Sons, Sixth Edition
Kernel Projects for Linux by Gary Nutt, Addison Wesley

References/Materials
http://www.cs.ucr.edu/~vana/cs153/resources.htm Additional resources for the course
http://www.cs.ucr.edu/~vana/cs153/assignments.htm Supporting material for the project
assignments

Course Goals/Objectives

1. Study basic principles underlying the design of operating systems with a focus on
principles and mechanisms used throughout the design

2. An understanding of CPU scheduling, storage management: memory management,
virtual memory and file systems

3. Study of concurrency control and synchronization, classic algorithms for synchronization
and concurrency management

4. Study Deadlocks Devices, device management and I/O systems
5. Study dynamic binding
6. An understanding of protection, access control and security
7. Improve skills in concurrent programming and introduce kernel programming
8. Provide students with an understanding of contemporary social and ethical in computer

science

Prerequisites by Courses and Topics
CS 061. Machine Organization and Assembly Language Programming
CS 141. Intermediate Data Structures and Algorithms
C++ programming proficiency

CS 153 page 2

Major Topics Covered in the Course
Introduction to Operating Systems, Computer-System Structures and Operating-System
Structures. Process Management: Processes, Threads, CPU Scheduling, Process Synchronization
and Deadlocks. Storage Management: Memory Management, Virtual Memory, File-System
Interface, File-System Implementation, Contemporary Social and Ethical Issues (privacy and
information use)

Laboratory schedule: number of sessions per week and duration of each session
Lecture 3 hours
Laboratory 3 hours

Lab1: Practicing system functions
Lab2: Working on the 1st project assignment - shell programming
Lab3: Working on the 1st project assignment - shell programming
Lab4: Introduction to multi-threading
Lab5: Working on the 2nd project assignment – multithreading
Lab6: Working on the 2nd project assignment – multithreading
Lab7: Introduction to file systems
Lab8: Working on the 3rd project assignment – file systems
Lab9: Working on the 3rd project assignment – file systems
Lab10: Working on the 3rd project assignment – file systems

Laboratory projects (specify number of weeks on each)
1st project – Shell programming: 2 weeks
2nd project – Multithreading programs: 2 weeks
3rd project – File system: 3 weeks

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 10 10 Data Structures 10 5
Software Design 20 15 Prog. Languages 15 5
Comp. Arch. 5 5

Oral and Written Communications:
Every student is required to submit at least __1__ written reports (not including exams,
tests, quizzes, or commented programs) of typically _2-3__ pages and to make __1__
oral presentations of typically __10_ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

CS 153 page 3

Students have at least one hour of lecture on contemporary social and ethical issues,
focusing on privacy and information use. Students are tested with an essay, either in class
or on the final exam.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Introduction to Operating Systems Structures – 1 lecture
Introduction to Computer System Structures – 1 lecture
Process Management – 2 lectures
Threads – 2 lecture
CPU Scheduling - 2 lectures
Process Synchronization – 2 lectures
Deadlocks – 3 lectures
Memory Management – 3 lectures
Virtual Memory – 2 lectures
File systems – 2 lectures

Problem Analysis

Please describe the analysis experiences common to all course sections.

Students will learn to analyze the requirements and goals of the projects, identify the
important components and analyze the efficiency of their solutions.
The students will learn the importance of analysis through hands-on experience.

Solution Design

Please describe the design experiences common to all course sections.
A primary goal of the course is the design of solutions that meet the project requirements.
The students will design, implement and test various components of an operating system (a
UNIX Shell, a CPU Scheduler, a Multithreading program and a File System). The students
will apply software tools to build and evaluate their designs.
The students will learn the importance of solution design through hands-on experience. This
will help them understand the complexity of building real systems.

Assessment methods
Homeworks – 10%
Projects – 30%
2 Midterm Exams – 20%
Final Exam – 40%

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.

CS 153 page 4

Students will learn how to design and implement various components of an operating system,
thus they will understand the overall engineering design process (identification of constraints,
description of design criteria and objectives, usage of tools, development of a prototype,
evaluation of the prototype based on the design criteria). Students will get hands-on experience in
proposing, designing and executing the project.
Students will also learn how to work in teams; each student will actively participate as a member
of a team, collaborate with the other team members, share the daily design activities and
management of the project and contribute to achieve the project goals. At the end of the project,
they will have to write a team report that describes their design, thus they will learn how to
communicate their ideas effectively.

Relationship of course to program outcomes: The contribution of CS153 to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Study basic principles underlying the design of operating
systems with a focus on principles and mechanisms used
throughout the design

1 0 1 0 1 0 0 0 0 0 3

An understanding of CPU scheduling storage management:
memory management virtual memory and file systems

1 0 0 0 0 0 0 0 0 0 3

Study of concurrency control and synchronization classical
algorithms for synchronization and concurrency management

1 0 1 0 0 0 0 0 0 0 3

Study Deadlocks Devices device management and I/O
systems

1 0 0 0 0 0 0 0 0 0 3

Study dynamic binding 0 0 0 0 0 0 0 0 0 0 3
An understanding of protection access control and security 1 0 0 0 0 1 0 1 0 0 3
Improve skills in concurrent programming and introduce
kernel programming

3 2 0 0 0 0 0 0 0 0 3

Provide students with an understanding of contemporary
social and ethical issues

0 0 0 0 0 0 0 0 0 3 0

Prepared by, and date of preparation:
Vana Kalogeraki – 06/15/06

CS 161 page 1

COURSE DESCRIPTION

Dept., Number Computer Science

and Engineering,
CS 161

Course Title Design and Architecture of Computer
Systems

Units 4 Course
Coordinator

Dr. Laxmi N. Bhuyan

Required/elective Elective URL (if any): http://www.cs.ucr.edu/~bhuyan/cs161
(lectures)
http://www.cs.ucr.edu/~vladimir/cs161
(discussions)

Current Catalog Description: A study of the fundamentals of computer design. Topics
include the performance evaluation of microprocessors, instruction set design and
measurements of use, microprocessor implementation techniques including multi-cycle
and pipelined implementations, computer arithmetic, memory hierarchy, and input/output
(I/O) systems.

Textbook: Patterson and Hennessy, “Computer Organization and Design” Morgan
Kaufmann publisher

References/Materials
Lecture slides, available via the lectures web site;
selected discussion notes, available via the discussions web site.

Course Goals/Objectives:

1. Understand instructions as the language of the machine and the tradeoffs in
instruction set design

2. Introduction to the issues and factors that impact performance, both hardware and
software

3. Learn how to design the data-path and control unit as the heart of the CPU
4. Introduction to computer arithmetic: fast addition and multiplication
5. Introduction to memory hierarchy: simple caches and virtual memory
6. Learn how to design fast CPUs using pipelining
7. Introduction to advanced processors using instruction level parallelism
8. Provide students with an understanding of contemporary social and ethical in

computer science

Prerequisites by Courses and Topics: CS 120B/EE 120B: Introduction to Embedded
Systems. Introduction to hardware and software design of digital computing systems
embedded in electronic devices (such as digital cameras or portable video games). Topics
include custom and programmable processor design, standard peripherals, memories,
interfacing, and hardware/software tradeoffs. Laboratory involves use of synthesis tools,
programmable logic, and microcontrollers and development of working embedded
systems; concurrent enrollment in CS 161L.

CS 161 page 2

Major Topics Covered in the Course
Chapter 1: Introduction
Chapter 2: MIPS Instructions
Chapter 3: Computer Arithmetic
Chapter 4: Understanding Performance
Chapter 5: The Processor: Datapath and Control
Chapter 7: Memory Hierarchy
Chapter 8: I/O System
Contemporary social and ethical issues

Laboratory schedule: number of sessions per week and duration of each session:

There is a separate laboratory class, CS 161 L, which is a co-requisite for the course. In
addition to the 3 hours a week of lectures, this course has 1 weekly discussion session,
which lasts for 50 minutes.

Weekly Discussion Schedule:

Week 1: Introduction
Week 2: Homework 1 (Assessing and Understanding Performance) introduced
Week 3: Solutions for Homework 1, Homework 2 (Instructions) introduced
Week 4: Homework 2 discussed
Week 5: Solutions for Homework 2, Homework 3 (Arithmetic) introduced
Week 6: Homework 3 discussed
Week 7: Solutions for Homework 3, Homework 4 (Datapath and Control) introduced
Week 8: Homework 4 discussed
Week 9: Solutions for Homework 4, Homework 5 (Memory Hierarchy) introduced
Week 10: Overview, Solutions for Homework 5

Laboratory projects (specify number of weeks on each)

There were no specific projects for the discussion sessions.

Instead, there were 5 homeworks, and discussions were structured to present material and
strategies useful for solving the homeworks. Solutions to selected problems were presented after
homeworks have been graded.

On average, for each of the 5 homework topics two weeks were allocated:

• Assessing and Understanding Performance (2 weeks)
• Instructions (2 weeks)
• Arithmetic (2 weeks)
• Datapath and Control (2 weeks)
• Memory Hierarchy (2 weeks)

CS 161 page 3

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms Data Structures
Software Design Prog. Languages
Comp. Arch. 100

Oral and Written Communications:
Every student is required to submit at least __0___ written reports (not including exams,
tests, quizzes, or commented programs) of typically _0____ pages and to make __0___
oral presentations of typically _0____ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Students have at least one hour of lecture on contemporary social and ethical issues,
focusing on property rights. Students are tested with an essay, either in class or on the final
exam.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

The theoretical material consists of understanding of the instruction sets of a typical CPU,
basic building blocks of datapath, and memory units. Approximately 50% of the time is
spent in explaining these operations.

Problem Analysis

 Please describe the analysis experiences common to all course sections.

Analyzing the problem to get the understanding of the requirements was emphasized in the
lectures and in the discussions.

Solution Design

Please describe the design experiences common to all course sections.

CS 161 page 4

This course emphasizes quantitative approach to computer architecture; hence, a significant
number of problems required quantitatively evaluating several alternative solutions to find
the best one for the problem at hand.

Assessment methods:

20% Homeworks (5 homeworks, 4% each)

20% Exam 1

25% Exam 2

35% Exam 3

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.

Relationship of course to program outcomes: The contribution of CS161 to program
outcomes (a)-(k) or (1) – (7) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Understand instructions as the language of the machine and
the tradeoffs in instruction set design

1 1 1 0 1 0 0 0 0 0 3

Introduction to the issues and factors that impact
performance, both hardware and software

2 2 2 0 1 0 0 0 0 0 3

Learn how to design the data-path and control unit as the
heart of the CPU

3 2 3 0 0 0 0 0 0 0 3

Introduction to computer arithmetic: fast addition and
multiplication

3 0 3 0 2 0 0 0 0 0 3

Introduction to memory hierarchy: simple caches and virtual
memory

2 2 3 0 2 0 0 0 0 0 3

Learn how to design fast CPUs using pipelining 3 2 3 0 0 0 0 0 0 0 3
Introduction to advanced processors using instruction-level
parallelism

3 2 3 0 2 0 0 0 0 0 3

Provide students with an understanding of contemporary
social and ethical issues

0 0 0 0 0 0 0 0 0 3 0

Prepared by, and date of preparation:
L.N. Bhuyan, June 22, 2006

CS 179 page 1

COURSE DESCRIPTION

Dept., Number CS 179 Course Title Project in Computer Science
Units 4 Course Coordinator Christian Shelton
Required/elective required URL (if any):

Current Catalog Description
Under the direction of a faculty member, students (individually or in small teams with shared
responsibilities) propose, design, build, test, and document software and/or hardware devices or
systems. Requires a written report, giving details of the project and test results, and an oral
presentation of the design aspects. Emphasizes teamwork, making technical presentations, and
developing oral and written communication skills.

Textbook
varies from offering to offering

References/Materials
ACM Code of Ethics and Professional Responsibility, other topical information, plus additional
material that varies from offering to offering.

Course Goals/Objectives
1: Balancing design tradeoffs: cost performance schedule and risk
2: Writing project proposals
3: Team-project organization and management (including time lines)
4: Requirements capture and analysis
5: Design and architecture
6: Prototyping (possibly via simulation)
7: Verification/validation
8: Writing and presenting final reports
9: Engineering professionalism and responsibility
10: Engineering careers and the modern world
11: Comtemporary social and ethical issues in computer science

Prerequisites by Courses and Topics
CS 141 with a grade of "C-" or better; ENGR 180; 12 additional upper-division units in
Computer Science. Each offering of CS179 is oriented toward a particular topic such as
compilers, in which case it would have our upper-division course on compilers, CS152, as a
prerequisite. Similarly for all other topics.

Major Topics Covered in the Course
teamwork, technical presentations, oral and written communication, various technical topics as
per course offering

CS 179 page 2

Laboratory schedule: number of sessions per week and duration of each session
nine lab-hours per week, three of which are rigidly scheduled per week, the remainder as desired
by the students

Laboratory projects (specify number of weeks on each)
project proposal (2 weeks), design specification (2 weeks), final project (10 weeks)

Estimate Curriculum Category Content (percent of time)
Area Core Advanced Area Core Advanced
Algorithms 10% Data Structures
Software Design 15% Prog. Languages
Comp. Arch.

Oral and Written Communications:
Every student is required to submit at least __1___ written reports (not including exams,
tests, quizzes, or commented programs) of typically __20___ pages and to make __1___
oral presentations of typically __15___ minute’s duration. Include only material that is
graded for grammar, spelling, style, and so forth, as well as for technical content,
completeness, and accuracy.

Social and Ethical Issues

Please list the topics that address the social and ethical implications of computing
covered in all course sections. Estimate the class time spent on each topic. In what
ways are the students in this course graded on their understanding of these topics (e.g.,
test questions, essays, oral presentations, and so forth)?

Professional codes of ethics, social implications of created artifacts including current
modern systems. Discussion of current systems in the topic area. Emphasis on
responsibility and social implications. Essay analyzing social and ethical issue required of
each student.

Theoretical Content

Please list the types of theoretical material covered, and estimate the time devoted to
such coverage.

Varies by topic. Usually advanced algorithms or architectures required for design project.

Problem Analysis

Please describe the analysis experiences common to all course sections.

Students must take a user-specified task and break it into engineering components.

CS 179 page 3

Solution Design

Please describe the design experiences common to all course sections.
Students must take the components and design, specify, and build each one to complete the
final project.

Assessment methods
Preliminary Specifications (20%), Teamwork/weekly reports (20%), Final Project (20%), Final
Report (20%), Final Presentation (20%)

Contribution of course to professional component: how the engineering experience
gained here prepares student for engineering practice, e.g., how this engineering
experience incorporates engineering standards and realistic constraints as described in
EAC Criterion 4.
This course directly involves the student in the identification of an engineering problem, the
design and specification of a system to meet the problem’s needs, the implementation of the
solution, and the presentation of the results. Throughout the course, the students work in teams
and must deal with team dynamics and scheduling. Students are responsible for making periodic
“reports” to the project manager (the instructor).

Relationship of course to program outcomes: The contribution of CS179 to program
outcomes (a)-(k) or (1) – (13) is summarized in the objective-outcome matrix table.

Objective Outcome Matrix
Objective Addresses Outcome: 1-slightly 2-moderately 3-substantially

Outcome Related Learning Objectives

A

B

C

D

E

F

G

H

I

J

K

Balancing design tradeoffs: cost performance schedule and
risk

2 0 3 3 3 0 0 0 0 0 3

Writing project proposals 0 0 0 3 3 0 3 0 0 0 3
Team-project organization and management (including time
lines)

0 0 2 3 0 0 3 0 0 0 3

Requirements capture and analysis 2 0 3 3 3 0 0 0 0 0 3
Design and architecture 2 0 0 3 3 0 0 0 0 0 3
Prototyping (possibly via simulation) 3 3 0 3 3 0 0 0 0 0 3
Vertification / Validation 3 3 0 3 0 0 0 0 0 0 3
Writing and presenting final reports 0 0 0 3 0 0 3 0 0 0 3
Engineering professionalism and responsibility 0 0 0 0 0 3 0 0 0 1 3
Engineering careers and the modern world 0 0 0 0 0 3 0 3 3 3 3

Contemporary social and ethical issues in computer science 0 0 0 0 0 0 0 0 0 3 0

Prepared by, and date of preparation:
Christian Shelton – 06/15/06

Instructor’s Manual for the Coverage of Ethical,
Social, and Professional Responsibility in

UCR’s CS Curriculum

February 21, 2007

Abstract

This document details the instruction and testing in ethical, social, and professional-
responsibility issues in UCR’s CS curriculum. It begins with a short description of
what is necessary and how to coordinate teaching among the courses. It concludes
with suggestions on how to organize the material to help instructors get started.

1 Requirements

Issues of social, ethical and professional responsibility must be taught in the
following four courses.

• CS 152 (Compiler Design)

• CS 153 (Design of Operating Systems)

• CS 161 (Design and Architecture of Computer Systems)

• CS 179 (Project in Computer Science)

Instructors of these courses should spend at least the equivalent of one class
period (i.e., one hour) covering such topics and the students must be tested
on their understanding either through questions on the final exam specifically
designed for this topic or a graded individual essay due during the term. These
per-item grades should appear in the course offering’s gradebook.

1

1.1 Coordination

Each course should cover a different aspect of social, ethical, and professional
responsibility; it is not useful to present students with the same material in
four separate courses. We propose the following areas for each course:1

• CS 152 (Compilers): Computer Crime & Software Integrity

• CS 153 (OS): Privacy and Information Use

• CS 161 (Architecture): Property Rights

• CS 179 (Senior Project): Responsibility & Social Implications

Below, this document gives examples of each to help instructors generate
classroom material and discussion topics.

Instructors are encouraged to make use of current events to drive the in-
class discussion. The topics above have been assigned to classes based on their
natural affinity with the courses’ technical material. Those specific allocations
should not be seen as rigid. If instructors find other topics that fit, they can
change the suggested topic, provided that they coordinate with the current
instructors for the other three courses and assure that the a reasonable range
of topics and examples is covered.

Note: instructors in all courses are encouraged to make occasional digres-
sions to discuss relevant contemporary social and ethical issues.

2 Ideas for Instruction

This section gives some ideas for material to be covered, examples that could
be used (or have been used), and methods for testing comprehension for each
of the areas listed above.

2.1 Testing Comprehension

It is not sufficient to merely discuss ethical and social issues in class. Testing is
best done by asking the students to analyze a situation and provide an analysis.
Essays are well-suited to this, but a short response question on an exam would
also work. Alternatively (or perhaps in conjunction), having students report
(and analyze) a current event is a good test of comprehension.

1These topics are taken loosely from the chapters of Deborah G. Johnson,
Computer Ethics: second edition, Prentice Hall, 1994. It provides a reasonable guide to
organizing a lecture and class discussion on any of these topics.

2

The criteria for judging such an essay are not straight-forward. Yet, the
instructor should look for evidence that the student has thought about the
situation from multiple points-of-view, reasoned about the competing interests,
and come to a conclusion through analytic reasoning.

In CS 179 (Project in Computer Science), it is especially recommended
that the instructor require an individual essay from each student on a social,
ethical, or professional topic. It should be related (to the degree possible) to
the student’s project. Possible essays include analyzing

• the social or economic impact of the project,

• data privacy and security of the project,

• a specific moral or ethical dilemma resulting from working in teams,

• or a specific dilemma related to the implementation of the project.

For example, the instructor might assign an essay asking the students to eval-
uate a situation in which their manager directs them to stop working on their
current project and implement a beta-tester online forum with censorship (say
blocking messages that point out fatal flaws in the software).

2.2 Computer Crime & Software Integrity

Viruses, denial of service attacks, stolen data, and the like are pretty well
known at this point. Some technical coverage or background might be helpful,
but probably isn’t necessary except to demonstrate the ease of creating security
holes and the ease in exploiting them. Coverage of one or more of the following
points would probably work well.

• Hacker Ethics: Hackers often contend that their actions are ethical.
Some of the arguments include

– Information should be free (and if it were, intellectual property and
security would be unnecessary).

– Breaking a system helps identify security problems.

– (For some attacks) No harm was done.

These arguments are not without some value and can be analyzed from
a variety of positions.

• Responsibility for Bugs: If a bug (like a stack over problem) is found
and exploited, who is responsible for it? Is the system designer responsible
for the exploit? A quick survey of end-user agreements might be eye-
opening for students.

3

In a compilers course, discussion of heavy language checking versus us-
ability (like Ada vs. C) might be instructive. Verification (and the issues
with specification authoring) is another possible subject.

Historic hacking accounts include the Robert Morris case and the Craig
Neidorf case. The former is interesting because he tried to stop the worm
once it got out of control. (It replicated 14-in-15 times instead of the desired
1-in-15 times using stack overflow in fingerd). The latter is interesting in that
the “stolen” data was later revealed to be in the public domain.

2.3 Privacy and Information Use

File-system level privacy issues are common. However, a discussion of other
privacy-level issues can naturally arise at the same time:

• Quantitative Changes leading to Qualitative Differences: Many
data have always been publicly available. However, the ability to quickly
collate and mine such data qualitatively changes the privacy associated
with it: housing prices, buyer spending habits, e-mail, medical records,
and workplace monitoring.

Is there a hard and fast line between public and private data? Examples
like zillow.com are current and germane to the students.

• Data Spread: There are no standard methods for securing data like
medical or credit records. Once someone has the information, you cannot
stop it from propagating further.

Discussion of legal and technical methods for trying to control the spread
of personal information. How to fix faulty information.

• Privacy and Entities: In UNIX-like file system, the notion of privacy is
very individual-based (groups are a very small step away from this). More
general databases or data records have more complex data relationships.

Medical records exist between an individual and a doctor, but they also
extend to the individual’s family (to some degree) and to other doctors
(to some degree). Technical, legal, and social solutions can be discussed.

A few general points can be brought up for any of the above discussions:

• A discussion of the “if an individual has nothing to hide, he or she should
not worry” rebuttal. This is clearly flawed to some degree when we
consider mistakes that enter databases.

4

• A discussion of the “an individual does not have to give out any informa-
tion” (or can actively give out false information) rebuttal. Again, clearly
not a complete argument.

• The ACM Code of Professional Conduct specifically states that members
will address individuals’ privacy, provide for the right kinds of security,
and minimize the amount of information gathered.

2.4 Property Rights

Some basic legal definitions are probably helpful for students:

• A patent covers a method or process and protects the invention for 17
years. Applying for one is costly. Does not apply to scientific laws or
mathematical formulas.

• A copyright covers an expression (but not the underlying idea) and applies
for 70 years. It is automatic upon creation but can be applied for easily.

• A trade secret varies more in definition, but must be kept internal to the
company in order to be a valid claim.

• A trademark guards a particular word, phrase, or logo.

Some possible topics of discussion include:

• Patent war chests: the goals and rationale behind companies patenting
many things (and buying companies for their patents). How a typical
patent war plays out (usually there is some contemporary court case in
the news about this).

• Software and patents and copyrights: Why should (or should not)
software be patentable. The patent process. Prior Art. Novelty.

• Why have protection for intellectual material? Does it encourage or
discourage intellectual endeavors?

• Software Piracy: given that software can be copied without degrading
the original, is anything actually stolen?

• Free software: “free” as in beer versus “free” as in speech. GNU soft-
ware. Licenses.

2.5 Responsibility and Social Implications

Issues such as “quantitative changes leading to qualitative differences” and the
ACM Code of Professional Conduct (from above) apply here as well. Revisiting

5

them (especially in the context of the students’ projects) could be valuable.
Additional possible topics include

• Warranties: Implied warranties, express warranties. Is software a prod-
uct or service?

• Online liability: Who is liable for information on a message board?
Who is responsible for tracking illegal online activity? Are they similar
to prior models (newspapers)?

• Workplace changes due to automation: how do changes in automa-
tion affect society? The economics of automation. The social effects of
automation.

• Refusal to work on a project: Does not working on a project absolve
one’s responsibility? Does not working change anything? Is “scientific
progress” inevitable?

• Autonomy: Does the autonomy that computers provide strengthen or
weaken societal bonds? Are online interactions as “deep” and socially
meaningful as face-to-face ones? Has the relative cheapness of web pub-
lication improved information dissemination?

• Access: Do computers (and technologies in general) increase or decrease
the disparity between “haves” and “have-nots”?

6

